| 1 |
LI P L, CHEN X Z, SHEN S J. Stereo R-CNN based 3D object detection for autonomous driving[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 7636-7644.
|
| 2 |
HATTORI H, LEE N, BODDETI V N, et al. Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision, 2018, 126 (9): 1027- 1044.
doi: 10.1007/s11263-018-1077-3
|
| 3 |
SCALISE R, THOMASON J, BISK Y, et al. Improving robot success detection using static object data[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D. C., USA: IEEE Press, 2020: 4229-4235.
|
| 4 |
邹慧海, 侯进. 改进SSD算法的道路小目标检测研究. 计算机工程, 2022, 48 (5): 281- 288.
URL
|
|
ZOU H H, HOU J. Research on road small target detection with improved SSD algorithm. Computer Engineering, 2022, 48 (5): 281- 288.
URL
|
| 5 |
GOPALAN R, LI R N, CHELLAPPA R. Domain adaptation for object recognition: an unsupervised approach[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2012: 999-1006.
|
| 6 |
李莉, 王新强, 银珊. 基于衰减补偿与直方图拉伸的水下图像增强算法. 计算机工程, 2022, 48 (6): 222- 227.
URL
|
|
LI L, WANG X Q, YIN S. Underwater image enhancement algorithm based on attenuation compensation and histogram stretching. Computer Engineering, 2022, 48 (6): 222- 227.
URL
|
| 7 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2014: 2672-2680.
|
| 8 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
| 9 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6154-6162.
|
| 10 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
| 11 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
| 12 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 6517-6525.
|
| 13 |
|
| 14 |
|
| 15 |
LONG M S, CAO Y, WANG J M, et al. Learning transferable features with deep adaptation networks[C]//Proceedings of the 32nd International Conference on Machine Learning. New York, USA: ACM Press, 2015: 97-105.
|
| 16 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
| 17 |
LI J J, CHEN E P, DING Z M, et al. Maximum density divergence for domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (11): 3918- 3930.
doi: 10.1109/TPAMI.2020.2991050
|
| 18 |
CHEN Y H, LI W, SAKARIDIS C, et al. Domain adaptive faster R-CNN for object detection in the wild[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 3339-3348.
|
| 19 |
SAITO K, USHIKU Y, HARADA T, et al. Strong-weak distribution alignment for adaptive object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 6949-6958.
|
| 20 |
XU M H, WANG H, NI B B, et al. Cross-domain detection via graph-induced prototype alignment[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 12352-12361.
|
| 21 |
GUAN D Y, HUANG J X, XIAO A R, et al. Uncertainty-aware unsupervised domain adaptation in object detection. IEEE Transactions on Multimedia, 2022, 24, 2502- 2514.
doi: 10.1109/TMM.2021.3082687
|
| 22 |
HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 630-645.
|
| 23 |
|
| 24 |
PEI Z Y, CAO Z J, LONG M S, et al. Multi-adversarial domain adaptation[C]//Proceedings of AAAI Conference on Artificial Intelligence. Menlo Park, USA: AAAI Press, 2018: 3934-3941.
|
| 25 |
KURMI V K, BAJAJ V, SUBRAMANIAN V K, et al. Curriculum based dropout discriminator for domain adaptation[EB/OL]. [2022-08-08]. https://arxiv.org/abs/1907.10628.
|
| 26 |
CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA. IEEE Press, 2016: 3213-3223.
|
| 27 |
SAKARIDIS C, DAI D X, VAN GOOL L. Semantic foggy scene understanding with synthetic data. International Journal of Computer Vision, 2018, 126 (9): 973- 992.
doi: 10.1007/s11263-018-1072-8
|
| 28 |
GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving?The KITTI vision benchmark suite[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2012: 3354-3361.
|
| 29 |
PADILLA R, NETTO S L, DA SILVA E A B. A survey on performance metrics for object-detection algorithms[C]//Proceedings of International Conference on Systems, Signals and Image Processing. Washington D. C., USA: IEEE Press, 2020: 237-242.
|
| 30 |
HSU C C, TSAI Y H, LIN Y Y, et al. Every pixel matters: center-aware feature alignment for domain adaptive object detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 733-748.
|
| 31 |
WANG W, CAO Y, ZHANG J, et al. Exploring sequence feature alignment for domain adaptive detection transformers[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 1730-1738.
|
| 32 |
LIU D N, ZHANG C Y, SONG Y, et al. Decompose to adapt: cross-domain object detection via feature disentanglement. IEEE Transactions on Multimedia, 2023, 25, 1333- 1344.
doi: 10.1109/TMM.2022.3141614
|
| 33 |
ALQASIR H, MUSELET D, DUCOTTET C. Region proposal oriented approach for domain adaptive object detection[C]//Proceedings of International Conference on Advanced Concepts for Intelligent Vision Systems. Berlin, Germany: Springer, 2020: 38-50.
|