| 1 |
DDY S R. Hidden Markov models. Current Opinion in Structural Biology, 1996, 6 (3): 361- 365.
doi: 10.1016/S0959-440X(96)80056-X
|
| 2 |
TONG S, KOLLER D. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2001, 2, 45- 66.
|
| 3 |
LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning. New York, USA: ACM Press, 2001: 282-289.
|
| 4 |
LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]//Proceedings of 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Strusbourg, USA: Association for Computational Linguistics, 2016: 387-396.
|
| 5 |
CHIU J P C, NICHOLS E. Named entity recognition with bidirectional LSTM-CNNs. Transactions of the Association for Computational Linguistics, 2016, 4, 357- 370.
doi: 10.1162/tacl_a_00104
|
| 6 |
|
| 7 |
STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[C]//Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2017: 465-478.
|
| 8 |
DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]//Proceedings of the 34th International Conference on Machine Learning. New York, USA: ACM Press, 2017: 933-941.
|
| 9 |
|
| 10 |
王笑月, 李茹, 段菲. 一种基于门控空洞卷积的高效中文命名实体识别方法. 中文信息学报, 2021, 35 (1): 72- 80.
URL
|
|
WANG X Y, LI R, DUAN F. An efficient Chinese named entity recognition method based on gated-dilated convolution. Journal of Chinese Information Processing, 2021, 35 (1): 72- 80.
URL
|
| 11 |
|
|
|
| 12 |
胥小波, 王涛, 康睿, 等. 多特征中文命名实体识别. 四川大学学报(自然科学版), 2022, 59 (2): 51- 57.
URL
|
|
XU X B, WANG T, KANG R, et al. Multi-feature Chinese named entity recognition. Journal of Sichuan University (Natural Science Edition), 2022, 59 (2): 51- 57.
URL
|
| 13 |
廖涛, 黄荣梅, 张顺香, 等. 基于交互式特征融合的嵌套命名实体识别. 计算机工程, 2022, 48 (12): 119-126, 133
URL
|
|
LIAO T, HUANG R M, ZHANG S X, et al. Nested named entity recognition based on interactive feature fusion. Computer Engineering, 2022, 48 (12): 119-126, 133
URL
|
| 14 |
廖列法, 谢树松. 基于注意力机制特征融合的中文命名实体识别. 计算机工程, 2023, 49 (4): 256- 262.
URL
|
|
LIAO L F, XIE S S. Chinese named entity recognition based on attention mechanism feature fusion. Computer Engineering, 2023, 49 (4): 256- 262.
URL
|
| 15 |
岳增营, 叶霞, 刘睿珩. 基于语言模型的预训练技术研究综述. 中文信息学报, 2021, 35 (9): 15- 29.
URL
|
|
YUE Z Y, YE X, LIU R H. A survey of language model based pre-training technology. Journal of Chinese Information Processing, 2021, 35 (9): 15- 29.
URL
|
| 16 |
梁杰, 陈嘉豪, 张雪芹, 等. 基于独热编码和卷积神经网络的异常检测. 清华大学学报(自然科学版), 2019, 59 (7): 523- 529.
URL
|
|
LIANG J, CHEN J H, ZHANG X Q, et al. Anomaly detection based on single heat coding and convolutional neural network. Journal of Tsinghua University (Science and Technology), 2019, 59 (7): 523- 529.
URL
|
| 17 |
|
| 18 |
PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2014: 1532-1543.
|
| 19 |
|
| 20 |
|
| 21 |
AHMAD W, CHAKRABORTY S, RAY B, et al. Unified pre-training for program understanding and generation[C]//Proceedings of 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2021: 2655-2668.
|
| 22 |
LAN Z, CHEN M, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language representations[EB/OL]. [2022-07-01]. https://arxiv.org/abs/1909.11942.
|
| 23 |
|
| 24 |
ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2018: 1554-1564.
|
| 25 |
GUI T, ZOU Y C, ZHANG Q, et al. A lexicon-based graph neural network for Chinese NER[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2019: 1040-1050.
|
| 26 |
|
| 27 |
|
| 28 |
MA R T, PENG M L, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 5951-5960.
|
| 29 |
LIU W, FU X Y, ZHANG Y, et al. Lexicon enhanced Chinese sequence labeling using BERT adapter[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 5847-5858.
|
| 30 |
|
| 31 |
LI X N, YAN H, QIU X P, et al. FLAT: Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 6836-6842.
|
| 32 |
ZHU E W, LI J P. Boundary smoothing for named entity recognition[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 7096-7108.
|