| 1 | ETHAYARAJH K. How contextual are contextualized word representations? Comparing the geometry of BERT, ELMo, and GPT-2 embeddings[C]∥Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2019: 55-65. | 
																													
																							| 2 | KIM Y. Convolutional neural networks for sentence classification[C]∥Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2014: 1746-1751. | 
																													
																							| 3 | ZENG D J, LIU K, LAI S W, et al. Relation classification via convolutional deep neural network[C]∥Proceedings of COLING 2014. Dublin, Ireland: Dublin City University and Association for Computational Linguistics, 2014: 2335-2344. | 
																													
																							| 4 | 郭丽丽, 丁世飞. 深度学习研究进展. 计算机科学, 2015, 42(5): 28- 33.  URL
 | 
																													
																							|  | GUO L L, DING S F. Research progress on deep learning. Computer Science, 2015, 42(5): 28- 33.  URL
 | 
																													
																							| 5 | LIU G, GUO J B. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing, 2019, 337(C): 325- 338. | 
																													
																							| 6 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9(8): 1735- 1780.  doi: 10.1162/neco.1997.9.8.1735
 | 
																													
																							| 7 | YANG Z C, YANG D Y, DYER C, et al. Hierarchical attention networks for document classification[C]∥Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2016: 1480-1489. | 
																													
																							| 8 | 万齐斌, 董方敏, 孙水发. 基于BiLSTM-Attention-CNN混合神经网络的文本分类方法. 计算机应用与软件, 2020, 37(9): 94-98, 201.  URL
 | 
																													
																							|  | WAN Q B, DONG F M, SUN S F. Text classification method based on BiLSTM-Attention-CNN hybrid neural network. Computer Applications and Software, 2020, 37(9): 94-98, 201.  URL
 | 
																													
																							| 9 |  | 
																													
																							| 10 | 陈立潮, 秦杰, 陆望东, 等. 自注意力机制的短文本分方法. 计算机工程与设计, 2022, 43(3): 728- 734. | 
																													
																							|  | CHEN L C, QIN J, LU W D, et al. Short text classification method based on self-attention mechanism. Computer Engineering and Design, 2022, 43(3): 728- 734. | 
																													
																							| 11 | 石磊, 王明宇, 宋哲理, 等. 自注意力机制和BiGRU相结合的文本分类研究. 小型微型计算机系统, 2022, 43(12): 2541- 2548.  URL
 | 
																													
																							|  | SHI L, WANG M Y, SONG Z L, et al. Text classification research with the combination of self-attention mechanism and BiGRU. Journal of Chinese Computer Systems, 2022, 43(12): 2541- 2548.  URL
 | 
																													
																							| 12 | 殷亚博, 杨文忠, 杨慧婷, 等. 基于卷积神经网络和KNN的短文本分类算法研究. 计算机工程, 2018, 44(7): 193- 198.  URL
 | 
																													
																							|  | YIN Y B, YANG W Z, YANG H T, et al. Research on short text classification algorithm based on convolutional neural network and KNN. Computer Engineering, 2018, 44(7): 193- 198.  URL
 | 
																													
																							| 13 | 王坤, 段湘煜. 倾向近邻关联的神经机器翻译. 计算机科学, 2019, 46(5): 198- 202.  URL
 | 
																													
																							|  | WANG K, DUAN X Y. Neural machine translation inclined to close neighbor association. Computer Science, 2019, 46(5): 198- 202.  URL
 | 
																													
																							| 14 |  | 
																													
																							| 15 | 朱烨, 陈世平. 最近邻注意力和卷积神经网络的文本分类模型. 小型微型计算机系统, 2020, 41(2): 375- 380.  URL
 | 
																													
																							|  | ZHU Y, CHEN S P. Text classification model based on nearest neighbor attention and convolution neural network. Journal of Chinese Computer Systems, 2020, 41(2): 375- 380.  URL
 | 
																													
																							| 16 | 关紫微, 吕钊, 滕金保. 基于最近邻注意力与卷积神经网络的服装分类模型. 毛纺科技, 2023, 51(8): 105- 111.  URL
 | 
																													
																							|  | GUAN Z W, LÜ Z, TENG J B. Clothing classification model based on KNN-attention and convolution neural network. Wool Textile Journal, 2023, 51(8): 105- 111.  URL
 | 
																													
																							| 17 | 朱璐, 陈世平. 融合情感增强与注意力的文本情感分析模型. 小型微型计算机系统, 2022, 43(5): 957- 963.  URL
 | 
																													
																							|  | ZHU L, CHEN S P. Text sentiment analysis combined sentiment enhanced and attention. Journal of Chinese Computer Systems, 2022, 43(5): 957- 963.  URL
 | 
																													
																							| 18 | YAN Z, RUI D H, ZUO Z L, et al. An unsupervised sentence embedding method by mutual in formation maximization[EB/OL]. [2023-05-10]. https://arxiv.org/abs/2009.12061 . | 
																													
																							| 19 | REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using siamese BERT-networks[C]∥Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2019: 3973-3983. | 
																													
																							| 20 | 高怡, 纪焘, 吴苑斌, 等. 基于标签增强和对比学习的鲁棒小样本事件检测. 中文信息学报, 2023, 37(4): 98- 108.  URL
 | 
																													
																							|  | GAO Y, JI T, WU Y B, et al. Robust few shot event detection based on label augmentation and contrastive learning. Journal of Chinese Information Processing, 2023, 37(4): 98- 108.  URL
 | 
																													
																							| 21 | 付海涛, 刘烁, 冯宇轩, 等. 基于对比学习方法的小样本学习. 吉林大学学报(理学版), 2023, 61(1): 111- 117.  URL
 | 
																													
																							|  | FU H T, LIU S, FENG Y X, et al. Few-shot learning based on contrastive learning method. Journal of Jilin University(Science Edition), 2023, 61(1): 111- 117.  URL
 | 
																													
																							| 22 | 甘红楠, 张凯. 参数自适应下基于近邻图的近似最近邻搜索. 计算机工程, 2022, 48(9): 28- 36.  URL
 | 
																													
																							|  | GAN H N, ZHANG K. Approximate nearest neighbor search based on neighbor graphs with parameter adaptation. Computer Engineering, 2022, 48(9): 28- 36.  URL
 | 
																													
																							| 23 | 李灿, 钱江波, 董一鸿, 等. M2LSH: 基于LSH的高维数据近似最近邻查找算法. 电子学报, 2017, 45(6): 1431- 1442.  URL
 | 
																													
																							|  | LI C, QIAN J B, DONG Y H, et al. M2LSH: an LSH based technique for approximate nearest neighbor searching on high dimensional data. Acta Electronica Sinica, 2017, 45(6): 1431- 1442.  URL
 | 
																													
																							| 24 |  | 
																													
																							| 25 | KINGMA D P, BA J. Adam: a method for stochastic optimization[C]∥Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: ICLR, 2015: 1-15. | 
																													
																							| 26 | YAO L, MAO C S, LUO Y. Graph convolutional networks for text classification[C]∥Proceedings of the AAAI Conference on Artificial Intelligence. [S. l.]: AAAI Press, 2019: 7370-7377. | 
																													
																							| 27 |  | 
																													
																							| 28 | 孙宇冲, 程曦苇, 宋睿华, 等. 多模态与文本预训练模型的文本嵌入差异研究. 北京大学学报(自然科学版), 2023, 59(1): 48- 56.  URL
 | 
																													
																							|  | SUN Y C, CHENG X W, SONG R H, et al. Difference between multi-modal vs. text pre-trained models in embedding text. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(1): 48- 56.  URL
 |