| 1 | 
																						 
											 周东明, 张灿龙, 唐艳平, 等.  联合语义分割与注意力机制的行人再识别模型. 计算机工程, 2022, 48 (2): 201- 206.  
																							 
																																					URL    
																																														 | 
										
																													
																							 | 
																						 
											  ZHOU D M ,  ZHANG C L ,  TANG Y P , et al.  Pedestrian re-identification model combining semantic segmentation and attention mechanism. Computer Engineering, 2022, 48 (2): 201- 206.  
																							 
																																					URL    
																																														 | 
										
																													
																							| 2 | 
																						 
											 WU X Y, WU Z Y, GUO H, et al. DANNet: a one-stage domain adaptation network for unsupervised nighttime semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2021: 15764-15773. 
																						 | 
										
																													
																							| 3 | 
																						 
											 赫晓慧, 宋定君, 李盼乐, 等.  融合多尺度特征的遥感影像道路提取方法. 计算机工程, 2022, 48 (8): 196- 205.  
																							 
																																					URL    
																																														 | 
										
																													
																							 | 
																						 
											  HE X H ,  SONG D J ,  LI P L , et al.  Remote sensing image road extraction method combined with multi-scale features. Computer Engineering, 2022, 48 (8): 196- 205.  
																							 
																																					URL    
																																														 | 
										
																													
																							| 4 | 
																						 
											 范润泽, 刘宇红, 张荣芬, 等.  基于多尺度注意力机制的道路场景语义分割模型. 计算机工程, 2023, 49 (2): 288- 295.  
																							 
																																					URL    
																																														 | 
										
																													
																							 | 
																						 
											  FAN R Z ,  LIU Y H ,  ZHANG R F , et al.  Road scene semantic segmentation model based on multi-scale attention mechanism. Computer Engineering, 2023, 49 (2): 288- 295.  
																							 
																																					URL    
																																														 | 
										
																													
																							| 5 | 
																						 
											 DAI D X, VAN GOOL L. Dark model adaptation: semantic image segmentation from daytime to nighttime[C]//Proceedings of the 21st International Conference on Intelligent Transportation Systems. Washington D.C.,USA:IEEE Press,2018: 3819-3824. 
																						 | 
										
																													
																							| 6 | 
																						 
											 SAKARIDIS C, DAI D X, VAN GOOL L. Guided curriculum model adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2019: 7373-7382. 
																						 | 
										
																													
																							| 7 | 
																						 
											  SAKARIDIS C ,  DAI D X ,  VAN GOOL L .  Map-guided curriculum domain adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (6): 3139- 3153.  
																							 
																									doi: 10.1109/TPAMI.2020.3045882    
																																																										 | 
										
																													
																							| 8 | 
																						 
											SUN L, WANG K W, YANG K L, et al. See clearer at night: towards robust nighttime semantic segmentation through day-night image conversion[EB/OL].[2023-06-05].  https://arxiv.org/abs/1908.05868.  
																						 | 
										
																													
																							| 9 | 
																						 
											 ROMERA E, BERGASA L M, YANG K L, et al. Bridging the day and night domain gap for semantic segmentation[C]//Proceedings of IEEE Intelligent Vehicles Symposium. Washington D.C.,USA:IEEE Press,2019:1312-1318. 
																						 | 
										
																													
																							| 10 | 
																						 
											 CORDTS M, OMRAN M, RAMOS S, et al. The Cityscapes dataset for semantic urban scene understanding[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2016: 3213-3223. 
																						 | 
										
																													
																							| 11 | 
																						 
											  MA H Y ,  LIN X R ,  YU Y Z .  I2F: a unified image-to-feature approach for domain adaptive semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (3): 1695- 1710.  
																							 
																									doi: 10.1109/TPAMI.2022.3229207    
																																																										 | 
										
																													
																							| 12 | 
																						 
											 YANG L H, ZHUO W, QI L, et al. ST++: make self-training work better for semi-supervised semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2022: 4258-4267. 
																						 | 
										
																													
																							| 13 | 
																						 
											 TSAI Y H, HUNG W C, SCHULTER S, et al. Learning to adapt structured output space for semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press, 2018: 7472-7481. 
																						 | 
										
																													
																							| 14 | 
																						 
											 ZHANG P, ZHANG B, ZHANG T, et al. Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2021: 12409-12419. 
																						 | 
										
																													
																							| 15 | 
																						 
											 WEI C, WANG W J, YANG W H, et al. Deep Retinex decomposition for low-light enhancement[EB/OL].[2023-06-05]. https://arxiv.org/abs/1808.04560. 
																						 | 
										
																													
																							| 16 | 
																						 
											 DENG X Q, WANG P, LIAN X C, et al. NightLab: a dual-level architecture with hardness detection for segmentation at night[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2022: 16917-16927. 
																						 | 
										
																													
																							| 17 | 
																						 
											 ZHU X Z, CHENG D Z, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2019: 6687-6696. 
																						 | 
										
																													
																							| 18 | 
																						 
											 HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2018: 7132-7141. 
																						 | 
										
																													
																							| 19 | 
																						 
											 MA L, MA T Y, LIU R S, et al. Toward fast, flexible, and robust low-light image enhancement[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2022: 5627-5636. 
																						 | 
										
																													
																							| 20 | 
																						 
											 HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2016: 770-778. 
																						 | 
										
																													
																							| 21 | 
																						 
											 ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2017: 6230-6239. 
																						 | 
										
																													
																							| 22 | 
																						 
											 VU T H, JAIN H, BUCHER M, et al. ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2019: 2512-2521. 
																						 | 
										
																													
																							| 23 | 
																						 
											  ZHANG Y H ,  GUO X J ,  MA J Y , et al.  Beyond brightening low-light images. International Journal of Computer Vision, 2021, 129 (4): 1013- 1037.  
																							 
																									doi: 10.1007/s11263-020-01407-x    
																																																										 | 
										
																													
																							| 24 | 
																						 
											  CHEN L C ,  PAPANDREOU G ,  KOKKINOS I , et al.  DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 834- 848.  
																							 
																									doi: 10.1109/TPAMI.2017.2699184    
																																																										 | 
										
																													
																							| 25 | 
																						 
											 LIN G S, MILAN A, SHEN C H, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2017: 5168-5177. 
																						 |