1 |
刘传洋, 吴一全. 基于深度学习的输电线路视觉检测方法研究进展. 中国电机工程学报, 2023, 43 (19): 7423- 7446.
URL
|
|
LIU C Y, WU Y Q. Research progress of vision detection methods based on deep learning for transmission lines. Proceedings of the CSEE, 2023, 43 (19): 7423- 7446.
URL
|
2 |
刘开培, 李博强, 秦亮, 等. 深度学习目标检测算法在架空输电线路绝缘子缺陷检测中的应用研究综述. 高电压技术, 2023, 49 (9): 3584- 3595.
URL
|
|
LIU K P, LI B Q, QIN L, et al. Review of application research of deep learning object detection algorithms in insulator defect detection of overhead transmission lines. High Voltage Engineering, 2023, 49 (9): 3584- 3595.
URL
|
3 |
方挺, 董冲, 胡兴柳, 等. 航拍图像中绝缘子串的轮廓提取和故障检测. 上海交通大学学报, 2013, 47 (12): 1818- 1822.
URL
|
|
FANG T, DONG C, HU X L, et al. Contour extraction and fault detection of insulator strings in aerial images. Journal of Shanghai Jiao Tong University, 2013, 47 (12): 1818- 1822.
URL
|
4 |
TAN P, LI X F, XU J M, et al. Catenary insulator defect detection based on contour features and gray similarity matching. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2020, 21 (1): 64- 73.
|
5 |
赵振兵, 李延旭, 戚银城, 等. 基于动态焦点损失函数和样本平衡方法的绝缘子缺陷检测方法. 电力自动化设备, 2020, 40 (10): 205- 211.
URL
|
|
ZHAO Z B, LI Y X, QI Y C, et al. Insulator defect detection method based on dynamic focus loss function and sample balance method. Electric Power Automation Equipment, 2020, 40 (10): 205- 211.
URL
|
6 |
王胜, 陈文, 匡小兵, 等. 一种基于多特征显著性融合的绝缘子区域检测与定位算法. 计算机应用研究, 2020, 37 (S2): 351- 353.
URL
|
|
WANG S, CHEN W, KUANG X B, et al. An insulator region detection and location algorithm based on multi-feature saliency fusion. Application Research of Computers, 2020, 37 (S2): 351- 353.
URL
|
7 |
陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述. 自动化学报, 2021, 47 (5): 1017- 1034.
URL
|
|
TAO X, HOU W, XU D. A survey of surface defect detection methods based on deep learning. Acta Automatica Sinica, 2021, 47 (5): 1017- 1034.
URL
|
8 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV). Washington D. C. , USA: IEEE Press, 2015: 1440-1448.
|
9 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
10 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C. , USA: IEEE Press, 2016: 779-788.
|
11 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
12 |
|
13 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 318- 327.
doi: 10.1109/TPAMI.2018.2858826
|
14 |
吴涛, 王伟斌, 于力, 等. 轻量级YOLOv3的绝缘子缺陷检测方法. 计算机工程, 2019, 45 (8): 275- 280.
URL
|
|
WU T, WANG W B, YU L, et al. Insulator defect detection method for lightweight YOLOv3. Computer Engineering, 2019, 45 (8): 275- 280.
URL
|
15 |
王道累, 张世恒, 袁斌霞, 等. 基于改进YOLOv5的轻量化玻璃绝缘子自爆缺陷检测研究. 高电压技术, 2023, 49 (10): 4382- 4390.
URL
|
|
WANG D L, ZHANG S H, YUAN B X, et. al. Research on self-explosion defect detection of lightweight glass insulators based on improved YOLOv5. High Voltage Engineering, 2023, 49 (10): 4382- 4390.
URL
|
16 |
|
|
GOU J N, DU S S, WANG S D, et al. Lightweight feature fusion CenterNet transmission line insulator self-explosion detection[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-13[2023-07-17]. https://doi.org/10.13700/j.bh.1001-5965.2022.0602. (in Chinese)
|
17 |
李斌, 屈璐瑶, 朱新山, 等. 基于多尺度特征融合的绝缘子缺陷检测. 电工技术学报, 2023, 38 (1): 60- 70.
URL
|
|
LI B, QU L Y, ZHU X S, et al. Insulator defect detection based on multi-scale feature fusion. Transactions of China Electrotechnical Society, 2023, 38 (1): 60- 70.
URL
|
18 |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916.
doi: 10.1109/TPAMI.2015.2389824
|
19 |
CHATFIELD K, SIMONYAN K, VEDALDI A, et al. Return of the devil in the details: delving deep into convolutional nets[EB/OL]. [2023-07-17]. https://arxiv.org/abs/1405.3531.
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C. , USA: IEEE Press, 2016: 770-778.
|
21 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C. , USA: IEEE Press, 2017: 4700-4708.
|
22 |
|
23 |
|
24 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2018: 8759-8768.
|
25 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C. , USA: IEEE Press, 2020: 10781-10790.
|
26 |
NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C//Proceedings of ECCV’16. Berlin, Germany: Springer International Publishing, 2016: 483-499.
|
27 |
|
28 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV). Washington D. C. , USA: IEEE Press, 2017: 336-359.
|
29 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2023-07-17]. https://arxiv.org/abs/2207.02696.
|
30 |
|