1 |
刘思进, 朱小飞, 彭展望. 联合多任务学习的对话情感分类和行为识别. 计算机学报, 2023, 46 (9): 1947- 1960.
|
|
LIU S J , ZHU X F , PENG Z W . Dialogue sentiment classification and act recognition based on multi-task learning. Chinese Journal of Computers, 2023, 46 (9): 1947- 1960.
|
2 |
蒲瞻星, 葛永新. 基于多特征融合的小样本视频行为识别算法. 计算机学报, 2023, 46 (3): 594- 608.
|
|
PU Z X , GE Y X . Few-shot action recognition in video based on multi-feature fusion. Chinese Journal of Computers, 2023, 46 (3): 594- 608.
|
3 |
YOU H , ZHONG X , LIU W X , et al. Converting artificial neural networks to ultralow-latency spiking neural networks for action recognition. IEEE Transactions on Cognitive and Developmental Systems, 2024, 16 (4): 1533- 1545.
doi: 10.1109/TCDS.2024.3375620
|
4 |
张洋, 姚登峰, 江铭虎, 等. 基于EfficientDet网络的细粒度吸烟行为识别. 计算机工程, 2022, 48 (3): 302-309, 314.
URL
|
|
ZHANG Y , YAO D F , JIANG M H , et al. Fine-grained smoking behavior recognition based on EfficientDet network. Computer Engineering, 2022, 48 (3): 302-309, 314.
URL
|
5 |
闫兴亚, 匡娅茜, 白光睿, 等. 基于深度学习的学生课堂行为识别方法. 计算机工程, 2023, 49 (7): 251- 258.
URL
|
|
YAN X Y , KUANG Y Q , BAI G R , et al. Student classroom behavior recognition method based on deep learning. Computer Engineering, 2023, 49 (7): 251- 258.
URL
|
6 |
ZHAO L, WANG Y X, ZHAO J P, et al. Learning view-disentangled human pose representation by contrastive cross-view mutual information maximization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 12793-12802.
|
7 |
DHIMAN C , VISHWAKARMA D K . View-invariant deep architecture for human action recognition using two-stream motion and shape temporal dynamics. IEEE Transactions on Image Processing, 2020, 29, 3835- 3844.
doi: 10.1109/TIP.2020.2965299
|
8 |
ZHONG X, ZHOU Z, LIU W X, et al. VCD: view-constraint disentanglement for action recognition[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C., USA: IEEE Press, 2022: 2170-2174.
|
9 |
LIU W X , ZHONG X , ZHOU Z , et al. Dual-recommendation disentanglement network for view fuzz in action recognition. IEEE Transactions on Image Processing, 2023, 32, 2719- 2733.
doi: 10.1109/TIP.2023.3273459
|
10 |
詹健浩, 甘利鹏, 毕永辉, 等. 基于知识蒸馏的多模态融合行为识别方法. 计算机工程, 2023, 49 (10): 280-288, 297.
doi: 10.3778/j.issn.1002-8331.2201-0238
|
|
ZHAN J H , GAN L P , BI Y H , et al. Action recognition method with multi-modality fusion based on knowledge distillation. Computer Engineering, 2023, 49 (10): 280-288, 297.
doi: 10.3778/j.issn.1002-8331.2201-0238
|
11 |
施海勇, 侯振杰, 巢新, 等. 多模态时空特征表示及其在行为识别中的应用. 中国图象图形学报, 2023, 28 (4): 1041- 1055.
|
|
SHI H Y , HOU Z J , CHAO X , et al. Multimodal spatial-temporal feature representation and its application in action recognition. Journal of Image and Graphics, 2023, 28 (4): 1041- 1055.
|
12 |
|
13 |
SHAO Z P , LI Y F , ZHANG H . Learning representations from skeletal self-similarities for cross-view action recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31 (1): 160- 174.
doi: 10.1109/TCSVT.2020.2965574
|
14 |
BAHRAMPOUR S , NASRABADI N M , RAY A , et al. Multimodal task-driven dictionary learning for image classification. IEEE Transactions on Image Processing, 2016, 25 (1): 24- 38.
doi: 10.1109/TIP.2015.2496275
|
15 |
LIU Z G , WANG L , YIN Z Y , et al. Task-driven joint dictionary learning model for multi-view human action recognition. Digital Signal Processing, 2022, 126, 103487.
doi: 10.1016/j.dsp.2022.103487
|
16 |
LI Y W, LI Y, VASCONCELOS N. RESOUND: towards action recognition without representation bias[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 520-535.
|
17 |
KIM B, KIM H, KIM K, et al. Learning not to learn: training deep neural networks with biased data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 9012-9020.
|
18 |
CHOI J, GAO C, MESSOU J C E, et al. Why can't I dance in the mall? Learning to mitigate scene bias in action recognition[EB/OL]. [2024-01-02]. http://arxiv.org/abs/1912.05534.
|
19 |
|
20 |
BAO W T, YU Q, KONG Y. Evidential deep learning for open set action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 13349-13358.
|
21 |
DUAN H D, ZHAO Y, CHEN K, et al. Mitigating representation bias in action recognition: algorithms and benchmarks[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2023: 557-575.
|
22 |
LI Q K, HUANG X L, LUO Y W, et al. Mitigating context bias in action recognition via skeleton-dominated two-stream network[C]//Proceedings of the 2023 Workshop on Advanced Multimedia Computing for Smart Manufacturing and Engineering. New York, USA: ACM Press, 2023: 65-70.
|
23 |
GRETTON A , BOUSQUET O , SMOLA A , et al. Measuring statistical dependence with Hilbert-Schmidt norms. Berlin, Germany: Springer, 2005.
|
24 |
|
25 |
TIAN C W , ZHENG M H , ZUO W M , et al. A cross Transformer for image denoising. Information Fusion, 2024, 102, 102043.
doi: 10.1016/j.inffus.2023.102043
|
26 |
TIAN C W , ZHENG M H , LI B , et al. Perceptive self-supervised learning network for noisy image watermark removal. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (8): 7069- 7079.
doi: 10.1109/TCSVT.2024.3349678
|
27 |
WANG J, NIE X H, XIA Y, et al. Cross-view action modeling, learning, and recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2014: 2649-2656.
|
28 |
SHAHROUDY A, LIU J, NG T T, et al. NTU RGB+D: a large scale dataset for 3D human activity analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 1010-1019.
|
29 |
CHEN Y X, ZHANG Z Q, YUAN C F, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 13359-13368.
|
30 |
CHI H G, HA M H, CHI S, et al. InfoGCN: representation learning for human skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 20186-20196.
|
31 |
FEICHTENHOFER C, FAN H Q, MALIK J, et al. SlowFast networks for video recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 6202-6211.
|
32 |
HARA K, KATAOKA H, SATOH Y. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet? [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 6546-6555.
|
33 |
|
34 |
NIE Q , WANG J L , WANG X , et al. View-invariant human action recognition based on a 3D bio-constrained skeleton model. IEEE Transactions on Image Processing, 2019, 28 (8): 3959- 3972.
doi: 10.1109/TIP.2019.2907048
|
35 |
SI C Y, CHEN W T, WANG W, et al. An attention enhanced graph convolutional LSTM network for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 1227-1236.
|
36 |
CHENG K, ZHANG Y F, HE X Y, et al. Skeleton-based action recognition with shift graph convolutional network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 183-192.
|
37 |
LI L G, WANG M S, NI B B, et al. 3D human action representation learning via cross-view consistency pursuit[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 4741-4750.
|
38 |
LIU X , LI Y , XIA R . Adaptive multi-view graph convolutional networks for skeleton-based action recognition. Neurocomputing, 2021, 444, 288- 300.
doi: 10.1016/j.neucom.2020.03.126
|
39 |
GUO T Y, LIU H, CHEN Z, et al. Contrastive learning from extremely augmented skeleton sequences for self-supervised action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2022: 762-770.
|
40 |
SONG Y F , ZHANG Z , SHAN C F , et al. Constructing stronger and faster baselines for skeleton-based action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (2): 1474- 1488.
doi: 10.1109/TPAMI.2022.3157033
|
41 |
ZHANG J H, LIN L L, LIU J Y. Hierarchical consistent contrastive learning for skeleton-based action recognition with growing augmentations[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2023: 3427-3435.
|
42 |
VYAS S, RAWAT Y S, SHAH M. Multi-view action recognition using cross-view video prediction[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 427-444.
|
43 |
XU C , WU X , LI Y C , et al. Cross-modality online distillation for multi-view action recognition. Neurocomputing, 2021, 456, 384- 393.
doi: 10.1016/j.neucom.2021.05.077
|
44 |
PARK Y , WOO S , LEE S M , et al. Cross-modal alignment and translation for missing modality action recognition. Computer Vision and Image Understanding, 2023, 236, 103805.
doi: 10.1016/j.cviu.2023.103805
|
45 |
ULLAH A , MUHAMMAD K , HUSSAIN T , et al. Conflux LSTMs network: a novel approach for multi-view action recognition. Neurocomputing, 2021, 435, 321- 329.
doi: 10.1016/j.neucom.2019.12.151
|
46 |
PATRICK M , CAMPBELL D , ASANO Y , et al. Keeping your eye on the ball: trajectory attention in video Transformers. Advances in Neural Information Processing Systems, 2021, 34, 12493- 12506.
|
47 |
PIERGIOVANNI A J, RYOO M S. Recognizing actions in videos from unseen viewpoints[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 4124-4132.
|
48 |
DAS S, RYOO M S. ViewCLR: learning self-supervised video representation for unseen viewpoints[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Washington D.C., USA: IEEE Press, 2023: 5573-5583.
|
49 |
CASELLA G , GEORGE E I . Explaining the Gibbs sampler. The American Statistician, 1992, 46 (3): 167- 174.
doi: 10.1080/00031305.1992.10475878
|