Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (1): 1-10. doi: 10.19678/j.issn.1000-3428.0069307

• Image Processing Based on Perceptual Information • Previous Articles     Next Articles

Research on Temporal-Spatial Semantic-Driven Progressive Multiview Action Debiasing

ZHONG Xian1, CHEN Liang1, LIU Wenxuan1,*(), YE Shu1, JIANG Kui2, WANG Zheng3, LIN Chia-Wen4   

  1. 1. School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, Hubei, China
    2. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
    3. School of Computer Science, Wuhan University, Wuhan 430072, Hubei, China
    4. Department of Electrical Engineering, Taiwan Tsing Hua University, Hsinchu 300044, Taiwan, China
  • Received:2024-01-26 Online:2025-01-15 Published:2024-08-27
  • Contact: LIU Wenxuan

时空语义驱动的渐进多视角行为去偏置研究

钟忺1, 陈亮1, 刘文璇1,*(), 叶舒1, 江奎2, 王正3, 林嘉文4   

  1. 1. 武汉理工大学计算机与人工智能学院, 湖北 武汉 430070
    2. 哈尔滨工业大学计算机科学与技术学院, 黑龙江 哈尔滨 150001
    3. 武汉大学计算机学院, 湖北 武汉 430072
    4. 台湾清华大学电机工程系, 台湾 新竹 300044
  • 通讯作者: 刘文璇
  • 基金资助:
    国家自然科学基金(62271361)

Abstract:

In practical applications, data collected from single-view cameras often lose visibility in certain areas due to object occlusion. Therefore, analyzing data from multiple views is crucial for maintaining social stability and public safety. To address the bias in multiview action recognition, arising from spatial semantic inconsistencies among different views and temporal semantic disparities during the execution of the same action, a multiview progressive debiasing method is proposed. First, guided by evidence theory within the context of multiple views for the same sample, the method leverages isomorphism across different views to mitigate inter-view bias. This involves optimizing the weights of features from different views to obtain a more comprehensive and unbiased representation. Second, employing a multi-granularity decoupling strategy, the method analyzes the impact of different granularities on debiased expression of features, thereby accurately separating relevant and irrelevant features while avoiding significant differences in representation caused by irrelevant information within a single view. Finally, the method constructs different feature weights along the temporal dimension, enhancing consistency in features within the same view and mitigating representation disparities for the same sample. The effectiveness of the proposed method is validated on multiple datasets, achieving cross-view accuracy rates of 97.4% and 96.4% on the N-UCLA and NTU-RGB+D datasets, respectively. This method not only meets the requirements for accurate recognition analysis under multiple views but also provides an effective solution to the bias problem in multiview recognition from a novel debiasing perspective.

Key words: multiview action recognition, progressive debiasing, evidence theory, decoupling, multi-granularity

摘要:

在实际应用中, 单视角摄像头采集数据由于物体存在遮挡而失去对某些区域的可见性, 因此结合多个视角下的数据进行行为分析对于维护社会稳定及民生安全至关重要。针对多视角行为识别中存在的偏置问题, 即不同视角下空间语义不一致导致的视角间行为表征差异以及同一行为执行过程中的时序语义不一致导致的行为表征差异, 提出一种渐进去偏置的多视角方法。首先, 在多视角下的同一行为样本中以证据理论为引导, 结合不同视角下的行为同构性进行视角间行为去偏置, 优化不同视角下关注的行为特征权重, 以获得更全面的无偏行为表示。其次, 结合多粒度解耦策略, 分析不同粒度对行为特征无偏表达的影响, 准确分离行为相关和行为无关特征, 以避免视角内行为无关信息扰乱行为表征导致的显著差异。最后, 在时序维度上构建不同行为特征权重, 增强同一视角内行为特征一致性, 减弱同一行为的行为表征差异。在多个数据集上的实验结果验证了所提方法的有效性, 在N-UCLA和NTU-RGB+D数据集上的跨视角准确率分别达到了97.4%和96.4%, 并且所提方法在满足多视角下对行为识别进行准确分析应用需求的同时通过一种新的去偏置思路为多视角行为识别问题提供了一种有效的解决方案。

关键词: 多视角行为识别, 渐进式去偏置, 证据理论, 解耦, 多粒度