Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (1): 11-19. doi: 10.19678/j.issn.1000-3428.0069724

• Image Processing Based on Perceptual Information • Previous Articles     Next Articles

Underwater Target Tracking Based on Uncertainty-Inspired Image Enhancement

LUO Xudong1, YUAN Di1,*(), CHANG Xiaojun2, HE Zhenyu3   

  1. 1. Guangzhou Institute of Technology, Xidian University, Guangzhou 510000, Guangdong, China
    2. Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney 2007, Australia
    3. School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
  • Received:2024-04-10 Online:2025-01-15 Published:2024-08-07
  • Contact: YUAN Di

基于不确定性启发图像增强的水下目标跟踪

罗旭东1, 袁笛1,*(), 常晓军2, 何震宇3   

  1. 1. 西安电子科技大学广州研究院, 广东 广州 510000
    2. 悉尼科技大学信息工程学院, 澳大利亚 悉尼 2007
    3. 哈尔滨工业大学(深圳)计算机科学与技术学院, 广东 深圳 518055
  • 通讯作者: 袁笛
  • 基金资助:
    国家自然科学基金(62202362); 中国博士后科学基金(2022TQ0247); 中国博士后科学基金(2023M742742)

Abstract:

The task of Underwater Visual Object Tracking (UVOT) not only requires dealing with the common challenges in outdoor tracking but also faces many unique difficulties specific to the underwater environment, including but are not limited to, optical degradation and scattering, uneven illumination, low visibility, and hydrodynamics. In these scenarios, directly applying a large number of traditional outdoor scene object tracking methods directly to underwater scenes inevitably leads to performance degradation. To address the above issues, first, an Underwater Image Enhancement (UIE) module inspired by uncertainty is introduced, aimed at specifically improving the quality of underwater images. This method decomposes UIE into distribution estimation and consensus processes and introduces a new probability network to learn the enhancement distribution of underwater images, thereby addressing the bias problem in reference images. These are subsequently applied to an attention-based feature fusion network to propose a target tracking algorithm, called UTransT. The feature fusion network combines self- and cross-attention mechanisms to effectively fuse template and search region features. The experimental results show that on the UTB180 dataset, the success rate of UTransT is 0.8 percentage points higher than that of MixFormer, with the best performance in the comparison algorithm, and normalization accuracy is nearly 1.9 percentage points higher. On the VMAT dataset, the success rate is 1.2 percentage points higher than that of the best-performing Masked Appearance Transfer (MAT) algorithm, with 1.5 percentage points higher normalization accuracy. Moreover, UTransT facilitates real-time tracking at 65 frames per second. These experimental results validate the effectiveness and feasibility of the proposed algorithm in underwater object tracking tasks.

Key words: image enhancement, underwater target tracking, attention mechanism, distribution estimation, probabilistic network

摘要:

水下视觉目标跟踪(UVOT)任务不仅需要应对常见的露天跟踪挑战, 而且还需要面对水下环境所特有的诸多挑战, 包括但不限于光学退化和散射、光照不均、能见度低、水动力学等影响。在这种情况下, 直接将大量传统的露天场景目标跟踪方法应用于水下场景, 其性能下降是难以避免的。为了解决上述问题, 首先引入一种基于不确定性启发的水下图像增强(UIE)模块, 将UIE拆分为分布估计和共识过程, 并利用一种新的概率网络来学习水下图像的增强分布, 以解决参考图像的偏差问题。然后将UIE模块应用于基于注意力的特征融合网络, 提出水下目标跟踪算法UTransT, 其中的特征融合网络结合自注意力和交叉注意力机制, 以便有效地融合模板特征和搜索区域特征。实验结果表明: 在UTB180数据集上, UTransT的成功率相比于对比算法中表现最优的MixFormer提高了0.8百分点、归一化精度提高了1.9百分点; 在VMAT数据集上, 其成功率相比对比算法中表现最优的掩盖外观转移(MAT)算法提高了1.2百分点、归一化精度提高了1.5百分点; UTransT能够以65帧/s的速度进行实时跟踪。这验证了所提算法在改善水下目标跟踪任务中的有效性和可行性。

关键词: 图像增强, 水下目标跟踪, 注意力机制, 分布估计, 概率网络