1 |
ROMANO S , VENDOME C , SCANNIELLO G , et al. A multi-study investigation into dead code. IEEE Transactions on Software Engineering, 2020, 46 (1): 71- 99.
doi: 10.1109/TSE.2018.2842781
|
2 |
KUDRJAVETS G, RASTOGI A, THOMAS J, et al. On quantifying the benefits of dead code removal[C]//Proceedings of IEEE International Conference on Software Maintenance and Evolution. Washington D. C., USA: IEEE Press, 2022: 563-563.
|
3 |
FOWLER M , BECK K . Refactoring: improving the design of existing code. New York, USA: Addison-Wesley Professional, 2018.
|
4 |
ROMANO S, SCANNIELLO G. DUM-tool[C]//Proceedings of IEEE International Conference on Software Maintenance and Evolution. Washington D. C., USA: IEEE Press, 2015: 339-341.
|
5 |
CHEN K, RAJLICH V. Case study of feature location using dependence graph[C]//Proceedings of the 8th International Workshop on Program Comprehension. Washington D. C., USA: IEEE Press, 2000: 241-247.
|
6 |
OBBINK N G, MALAVOLTA I, SCOCCIA G L, et al. An extensible approach for taming the challenges of JavaScript dead code elimination[C]//Proceedings of the 25th IEEE International Conference on Software Analysis, Evolution and Reengineering. Washington D. C., USA: IEEE Press, 2018: 291-401.
|
7 |
FARD A M, MESBAH A. JSNOSE: detecting JavaScript code smells[C]//Proceedings of the 13th IEEE International Working Conference on Source Code Analysis and Manipulation. Washington D. C., USA: IEEE Press, 2013: 116-125.
|
8 |
GUPTA A , SURI B , LAMBA L . Tracing bad code smells behavior using machine learning with software metrics. New York, USA: John Wiley & Sons, Ltd., 2021.
|
9 |
KAUR I , KAUR A . A novel four-way approach designed with ensemble feature selection for code smell detection. IEEE Access, 2021, 9, 8695- 8707.
doi: 10.1109/ACCESS.2021.3049823
|
10 |
艾成豪, 高建华, 黄子杰. 混合特征选择和集成学习驱动的代码异味检测. 计算机工程, 2022, 48 (7): 168-176, 198.
doi: 10.19678/j.issn.1000-3428.0062165
|
|
AI C H , GAO J H , HUANG Z J . Code smell detection driven by hybrid feature selection and ensemble learning. Computer Engineering, 2022, 48 (7): 168-176, 198.
doi: 10.19678/j.issn.1000-3428.0062165
|
11 |
AZEEM M I , PALOMBA F , SHI L , et al. Machine learning techniques for code smell detection: a systematic literature review and meta-analysis. Information and Software Technology, 2019, 108, 115- 138.
doi: 10.1016/j.infsof.2018.12.009
|
12 |
NIZAM A, AVAR M Y, ADAŞ Ö K, et al. Detecting code smell with a deep learning system[C]//Proceedings of Innovations in Intelligent Systems and Applications Conference. Washington D. C., USA: IEEE Press, 2023: 1-5.
|
13 |
TARWANI S, CHUG A. Application of deep learning models for code smell prediction[C]//Proceedings of the 10th International Conference on Reliability, Infocom Technologies and Optimization. Washington D. C., USA: IEEE Press, 2022: 1-5.
|
14 |
FAWAZ O, AMAAN M, SAHU S, et al. Experimentation of code smells using deep learning techniques[C]// Proceedings of the 6th International Conference on Contemporary Computing and Informatics. Washington D. C., USA: IEEE Press, 2023: 369-373.
|
15 |
NANADANI H, SAAD M, SHARMA T. Calibrating deep learning-based code smell detection using human feedback[C]//Proceedings of the 23rd IEEE International Working Conference on Source Code Analysis and Manipulation. Washington D. C., USA: IEEE Press, 2023: 37-48.
|
16 |
SINGH R , BINDAL A , et al. Long method and long parameter list code smells detection using functional and semantic characteristics. International Journal of Recent Technology and Engineering, 2020, 8 (6): 2223- 2232.
|
17 |
DI NUCCI D, PALOMBA F, TAMBURRI D A, et al. Detecting code smells using machine learning techniques: are we there yet?[C]//Proceedings of the 25th IEEE International Conference on Software Analysis, Evolution and Reengineering. Washington D. C., USA: IEEE Press, 2018: 612-621.
|
18 |
SHARMA T , EFSTATHIOU V , LOURIDAS P , et al. Code smell detection by deep direct-learning and transfer-learning. Journal of Systems and Software, 2021, 176, 110936.
doi: 10.1016/j.jss.2021.110936
|
19 |
HADJ-KACEM M, BOUASSIDA N. Deep representation learning for code smells detection using variational auto-encoder[C]//Proceedings of International Joint Conference on Neural Networks. Budapest, Hungary: IEEE Press, 2019: 1-8.
|
20 |
MERZAH B M, SELCUK Y E. Metric based detection of refused bequest code smell[C]//Proceedings of the 9th International Conference on Computational Intelligence and Communication Networks. Washington D. C., USA: IEEE Press, 2017: 53-57.
|
21 |
OLIVEIRA A, SOUSA L, OIZUMI W, et al. On the prioritization of design-relevant smelly elements: a mixed-method, multi-project study[C]//Proceedings of XⅢ Brazilian Symposium on Software Components, Architectures, and Reuse. New York, USA: ACM Press, 2019: 83-92.
|
22 |
宇通, 高建华. LightGBM融合CFS的开发者感知代码异味强度预测模型研究. 小型微型计算机系统, 2022, 43 (12): 2667- 2674.
|
|
YU T , GAO J H . Research on developer perceived code smell intensity prediction model based on LightGBM and CFS. Journal of Chinese Computer Systems, 2022, 43 (12): 2667- 2674.
|
23 |
SHARMA T. Multi-faceted code smell detection at scale using DesigniteJava2.0[C]//Proceedings of the 21st International Conference on Mining Software Repositories. New York, USA: ACM Press, 2024: 284-288.
|
24 |
CHIDAMBER S R , KEMERER C F . A metrics suite for object oriented design. IEEE Transactions on Software Engineering, 1994, 20 (6): 476- 493.
doi: 10.1109/32.295895
|
25 |
SCANNIELLO G. An investigation of object-oriented and code-size metrics as dead code predictors[C]//Proceedings of the 40th EUROMICRO Conference on Software Engineering and Advanced Applications. Washington D. C., USA: IEEE Press, 2014: 392-397.
|
26 |
BASILI V R , BRIAND L C , MELO W L . A validation of object-oriented design metrics as quality indicators. IEEE Transactions on Software Engineering, 1996, 22 (10): 751- 761.
doi: 10.1109/32.544352
|
27 |
|
28 |
徐红, 矫桂娥, 张文俊, 等. 基于卷积神经网络的结构化非平衡数据分类算法. 计算机工程, 2023, 49 (2): 81- 89.
doi: 10.19678/j.issn.1000-3428.0063871
|
|
XU H , JIAO G E , ZHANG W J , et al. Classification algorithm for structured imbalanced data based on convolutional neural network. Computer Engineering, 2023, 49 (2): 81- 89.
doi: 10.19678/j.issn.1000-3428.0063871
|
29 |
MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[C]//Proceedings of the 1st International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2013: 246-257.
|
30 |
WANG X, ZHANG Y Z, ZHAO L, et al. Dead code detection method based on program slicing[C]//Proceedings of International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. Nanjing, China: [s. n. ], 2017: 155-158.
|
31 |
CHEN Y F , GANSNER E R , KOUTSOFIOS E . A C++ data model supporting reachability analysis and dead code detection. IEEE Transactions on Software Engineering, 1998, 24 (9): 682- 694.
doi: 10.1109/32.713323
|
32 |
DAVIS I J, GODFREY M W, HOLT R C, et al. Analyzing assembler to eliminate dead functions: an industrial experience[C]//Proceedings of the 16th European Conference on Software Maintenance and Reengineering. Szeged, Hungary: IEEE Press, 2012: 467-470.
|
33 |
刘昕炜, 陶传奇. 一种静态分析与知识图谱结合的Java冗余代码检测方法. 计算机科学, 2023, 50 (3): 65- 71.
|
|
LIU X W , TAO C Q . Method of Java redundant code detection based on static analysis and knowledge graph. Computer Science, 2023, 50 (3): 65- 71.
|
34 |
MALAVOLTA I , NIRGHIN K , SCOCCIA G L , et al. JavaScript dead code identification, elimination, and empirical assessment. IEEE Transactions on Software Engineering, 2023, 49 (7): 3692- 3714.
doi: 10.1109/TSE.2023.3267848
|
35 |
BOOMSMA H, HOSTNET B V, GROSS H G. Dead code elimination for web systems written in PHP: lessons learned from an industry case[C]//Proceedings of the 28th IEEE International Conference on Software Maintenance. Trento, Italy: IEEE Press, 2012: 511-515.
|
36 |
张欣, 翟正利, 姚路遥. 基于CNN和LSTM混合模型的中文新闻文本分类. 计算机与数字工程, 2023, 51 (7): 1540-1543, 1573.
doi: 10.3969/j.issn.1672-9722.2023.07.018
|
|
ZHANG X , ZHAI Z L , YAO L Y . Text classification of Chinese news based on CNN and LSTM hybrid model. Computer & Digital Engineering, 2023, 51 (7): 1540-1543, 1573.
doi: 10.3969/j.issn.1672-9722.2023.07.018
|
37 |
KARPATHY A, LI F F. Deep visual-semantic alignments for generating image descriptions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE Press, 2015: 3128-3137.
|
38 |
ROMANO S, SCANNIELLO G. Exploring the use of rapid type analysis for detecting the dead method smell in Java code[C]//Proceedings of the 44th Euromicro Conference on Software Engineering and Advanced Applications. Prague, Czech Republic: [s. n. ], 2018: 167-174.
|