1 |
DE LA ESCALERA A , MORENO L E , SALICHS M A , et al. Road traffic sign detection and classification. IEEE Transactions on Industrial Electronics, 1997, 44 (6): 848- 859.
doi: 10.1109/41.649946
|
2 |
HOUBEN S, STALLKAMP J, SALMEN J, et al. Detection of traffic signs in real-world images: the German traffic sign detection benchmark[C]//Proceedings of the 2013 International Joint Conference on Neural Networks. Washington D.C., USA: IEEE Press, 2013: 1-8.
|
3 |
ZHU Z, LIANG D, ZHANG S H, et al. Traffic-sign detection and classification in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 2110-2118.
|
4 |
YANG Y, LUO H L, XU H R, et al. Towards real-time traffic sign detection and classification[C]//Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems. Washington D.C., USA: IEEE Press, 2014: 2022-2031.
|
5 |
BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C]//Proceedings of the 5th Annual Workshop on Computational Learning Theory. New York, USA: ACM Press, 1992: 144-152.
|
6 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2005: 886-893.
|
7 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2015: 1440-1448.
|
8 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
9 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 2961-2969.
|
10 |
GONG C , LI A , SONG Y , et al. Traffic sign recognition based on the YOLOv3 algorithm. Sensors (Basel, Switzerland), 2022, 22 (23): 9345.
doi: 10.3390/s22239345
|
11 |
REHMAN Y , AMANULLAH H , SAQIB BHATTI D M , et al. Detection of small size traffic signs using regressive anchor box selection and DBL layer tweaking in YOLOv3. Applied Sciences, 2021, 11 (23): 11555.
doi: 10.3390/app112311555
|
12 |
彭成, 张乔虹, 唐朝晖, 等. 基于YOLOv5增强模型的口罩佩戴检测方法研究. 计算机工程, 2022, 48 (4): 39- 49.
doi: 10.19678/j.issn.1000-3428.0061502
|
|
PENG C , ZHANG Q H , TANG Z H , et al. Research on mask wearing detection method based on YOLOv5 enhancement model. Computer Engineering, 2022, 48 (4): 39- 49.
doi: 10.19678/j.issn.1000-3428.0061502
|
13 |
邓天民, 谭思奇, 蒲龙忠. 基于改进YOLOv5s的交通信号灯识别方法. 计算机工程, 2022, 48 (9): 55- 62.
doi: 10.19678/j.issn.1000-3428.0062843
|
|
DENG T M , TAN S Q , PU L Z . Traffic light recognition method based on improved YOLOv5s. Computer Engineering, 2022, 48 (9): 55- 62.
doi: 10.19678/j.issn.1000-3428.0062843
|
14 |
JIA Z H , SUN S K , LIU G C . Real-time traffic sign detection based on weighted attention and model refinement. Neural Processing Letters, 2023, 55 (6): 7511- 7527.
doi: 10.1007/s11063-023-11271-8
|
15 |
LI S , WANG S , WANG P . A small object detection algorithm for traffic signs based on improved YOLOv7. Sensors (Basel, Switzerland), 2023, 23 (16): 7145.
doi: 10.3390/s23167145
|
16 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 7464-7475.
|
17 |
|
18 |
|
19 |
|
20 |
WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Washington D.C., USA: IEEE Press, 2018: 1451-1460.
|
21 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 770-778.
|
22 |
|
23 |
|
24 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7132-7141.
|
25 |
|
26 |
ZHANG Y F , REN W Q , ZHANG Z , et al. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing, 2022, 506, 146- 157.
doi: 10.1016/j.neucom.2022.07.042
|
27 |
|
28 |
ZHANG J M , HUANG M T , JIN X K , et al. A real-time Chinese traffic sign detection algorithm based on modified YOLOv2. Algorithms, 2017, 10 (4): 127.
doi: 10.3390/a10040127
|
29 |
|
30 |
|