计算机工程 ›› 2020, Vol. 46 ›› Issue (3): 60-65,72.doi: 10.19678/j.issn.1000-3428.0053929

• 人工智能与模式识别 • 上一篇    下一篇

基于BLSTM与方面注意力模块的情感分类方法

彭祝亮1, 刘博文1, 范程岸1, 王杰2, 肖明1,2, 廖泽恩1   

  1. 1. 广东工业大学 自动化学院 广东省物联网信息技术重点实验室, 广州 510006;
    2. 广州大学 广东省现代视听信息工程技术研究中心, 广州 510006
  • 收稿日期:2019-02-16 修回日期:2019-04-01 发布日期:2019-05-22
  • 作者简介:彭祝亮(1995-),女,硕士研究生,主研方向为自然语言处理;刘博文、范程岸,硕士研究生;王杰、肖明,教授、博士;廖泽恩,硕士研究生。
  • 基金项目:
    国家自然科学基金(61673124,61673126,61773128)。

Sentiment Classification Method Based on BLSTM and Aspect Attention Module

PENG Zhuliang1, LIU Bowen1, FAN Cheng'an1, WANG Jie2, XIAO Ming1,2, LIAO Zeen1   

  1. 1. Guangdong Key Laboratory of IoT Information Technology, School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangdong Modern Audio-Visual Information Engineering Technology Research Center, Guangzhou University, Guangzhou 510006, China
  • Received:2019-02-16 Revised:2019-04-01 Published:2019-05-22

摘要: 基于方面的情感分析已广泛应用于文本信息挖掘,但在句子情感极性模糊或包含多个不同方面情感极性时难以准确提取特征信息,削弱了情感极性分类效果。为解决该问题,提出一种结合双向长短记忆网络和方面注意力模块的情感分类方法。利用多个方面注意力模块同时对不同方面进行独立训练,使每个方面信息与注意力操作互不影响,各自进行注意力参数的学习与调整,以充分提取特定方面的隐藏信息,从而更准确地识别不同方面的情感极性。在SemEval数据集上的实验结果表明,该方法相对现有的基准情感分析方法,可有效提升分类精确率、查全率与F1值,优化情感分类效果。

关键词: 深度学习, 基于方面的情感分析, 循环神经网络, 自然语言处理, 注意力机制

Abstract: Aspect-Based Sentiment Analysis(ABSA) has been widely used in text information mining,but can hardly extract accurate feature information when the sentiment polarity of a sentence is fuzzy or a sentence has sentiment polarities of multiple aspects,which undermines performance of sentiment polarity classification.To address the problem,this paper proposes a sentiment classification method that combines the bidirectional long short-term memory and aspect attention module.The method uses multiple aspect attention modules to independently train different aspects at the same time,making information and attention operations of each aspect processed without affecting the other.Attention parameters of each aspect are independently learnt and modified,so hidden information of a specific aspect can be fully extracted for more effective recognition of sentiment polarities of different aspects.Experimental results on the SemEval dataset show that compared with the existing baseline sentiment analysis method,the proposed method can enhance sentiment classification performance,with the classification accuracy rate,recall rate and F1 value significantly improved.

Key words: deep learning, Aspect-Based Sentiment Analysis(ABSA), Recurrent Neural Network(RNN), natural language processing, attention mechanism

中图分类号: