计算机工程

• 人工智能及识别技术 • 上一篇    下一篇

基于依存句法分析的多特征词义消歧

史兆鹏,邹徐熹,向润昭   

  1. (合肥工业大学 计算机与信息学院,合肥 230000)
  • 收稿日期:2016-07-24 出版日期:2017-09-15 发布日期:2017-09-15
  • 作者简介:史兆鹏(1990—),男,硕士研究生,主研方向为自然语言处理、网络安全;邹徐熹、向润昭,硕士研究生。
  • 基金项目:
    国家自然科学基金(61272540)。

Multi-feature Word Sense Disambiguation Based on Dependency Parsing Analysis

SHI Zhaopeng,ZOU Xuxi,XIANG Runzhao   

  1. (School of Computer and Information,Hefei University of Technology,Hefei 230000,China)
  • Received:2016-07-24 Online:2017-09-15 Published:2017-09-15

摘要: 词义消歧在机器翻译、信息检索、语音语义识别等方面具有重要作用。为提高消歧质量,细化特征粒度,提出一种多特征词义消歧方案。通过依存句法分析提取上下文中多义词及义项的词性、依存结构、依存词等特征,细化特征粒度,并根据多特征构造权值函数,选择权值最大的义项作为多义词的义项。实验结果表明,与单一特征词义消歧相比,采用依存句法分析的多特征词义消歧方案细化了特征粒度,提高了消歧准确率。

关键词: 词义消歧, 依存句法, 细化特征, 多特征, 权值

Abstract: Word Sense Disambiguation(WSD) plays an important role in machine translation,information retrieval and speech semantic recognition.In order to improve the quality of disambiguation and refine the feature,a multi-feature granularity WSD scheme is proposed.The extraction of parts of speech,dependency structure and dependent words is used to detail feature grain by dependency parsing.The weight function is constructed according to the multiple features as the classifier,and the meaning with the largest weight is chosen as the sense of the polysemous word.Experimental results show that compared with single feature WSD,the multi-feature WSD scheme based on dependency parsing refines the feature and improves the accuracy of disambiguation.

Key words: Word Sense Disambiguation(WSD), dependency parsing, detailed feature, mulit-feature, weight

中图分类号: