[1]ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
[2]BAO J,ZHENG Y,WILKIE D,et al.Recommendations in location-based social networks:a survey[J].GeoInformatica,2015,19(3):525-565.
[3]YU Y,CHEN X.A survey of point-of-interest recommendation in location-based social networks[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press,2015:130.
[4]冷亚军,陆青,梁昌勇.协同过滤推荐技术综述[J].模式识别与人工智能,2014,27(8):720-734.
[5]BREESE J S,HECKERMAN D,KADIE C.Empirical analysis of predictive algorithms for collaborative filtering[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence.[S.l.]:Morgan Kaufmann Publishers Inc.,1998:43-52.
[6]GENTRY C.A fully homomorphic encryption scheme[M].Stanford,USA :Stanford University,2009.
[7]ERKIN Z,VEUGEN T,TOFT T,et al.Generating private recommendations efficiently using homomorphic encryption and data packing[J].IEEE Transactions on Information Forensics and Security,2012,7(3):1053-1066.
[8]LIU A,ZHENGY K,LIZ L,et al.Efficient secure similarity computation on encrypted trajectory data[C]//Proceedings of the 31st International Conference on Data Engineering.Washington D.C.,USA:IEEE Press,2015:66-77.
[9]CANNY J.Collaborative filtering with privacy[C]//Proceedings of 2002 IEEE Symposium on Security and Privacy.Washington D.C.,USA:IEEE Press,2002:45-57.
[10]LI L,LIU A,LI Q,et al.Privacy-preserving collaborative Web services QoS prediction via YAO’s garbled circuits and homomorphic encryption[J].Journal of Web Engineering,2016,15(3):203-225.
[11]HUANG Y,EVANS D,KATZ J,et al.Faster secure two-party computation using garbled circuits[C]//Proceedings of the 20th USENIX Conference on Security.[S.l.]:USENIX Association,2011:35.
[12]NIKOLAENKO V,IOANNIDIS S,WEINSBERG U,et al.Privacy-preserving matrix factorization[C]//Proceedings of 2013 ACM SIGSAC Conference on Computer and Communications Security.New York,USA:ACM Press,2013:801-812.
[13]NIKOLAENKO V,WEINSBERG U,IOANNIDIS S,et al.Privacy-preserving ridge regression on hundreds of millions of records[C]//Proceedings of 2013 IEEE Symposium on Security and Privacy.Washington D.C.,USA:IEEE Press,2013:334-348.
[14]ERKIN Z,VEUGEN T,TOFT T,et al.Generating private recommendations efficiently using homomorphic encryption and data packing[J].IEEE Transactions on Information Forensics and Security,2012,7(3):1053-1066.
[15]SWEENEY L.k-anonymity:a model for protecting privacy[J].International Journal of Uncertainty,Fuzziness and Knowledge-based Systems,2002,10(5):557-570.
[16]LI N,LI T,VENKATASUBRAMANIAN S.t-closeness:privacy beyond k-anonymity and l-diversity[C]//Proceedings of 2007 IEEE International Conference on Data Engineering.Washington D.C.,USA:IEEE Press,2007:106-115.
[17]POLAT H,DU W.Privacy-preserving collaborative filtering using randomized perturbation techniques[C]//Proceedings of the 3rd IEEE International Conference on Data Mining.Washington D.C.,USA:IEEE Press,2003:625-628.
[18]ZHU J,HE P,ZHENG Z,et al.A privacy-preserving QoS prediction framework for Web service recom-mendation[C]//Proceedings of 2015 IEEE International Conference on Web Services.Washington D.C.,USA:IEEE Press,2015:241-248.
[19]ZHANG S,FORD J,MAKEDON F.Deriving private information from randomly perturbed ratings[C]//Proceedings of 2006 SIAM International Conference on Data Mining.[S.l.]:Society for Industrial and Applied Mathematics,2006:59-69.
[20]DWORK C.Differential privacy:a survey of results[C]//Proceedings of the 5th International Conference on Theory and Applications of Models of Computation.Berlin,Germany:Springer,2008:1-19.
[21]熊平,朱天清,王晓峰.差分隐私保护及其应用[J].计算机学报,2014,37(1):101-122.
[22]MCSHERRY F,MIRONOV I.Differentially private recommender systems:building privacy into the net[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2009:627-636.
[23]JORGENSEN Z,YU T.A privacy-preserving framework for personalized,social recommendations[C]// Proceedings of the 17th International Conference on Extending Database Technology.[S.l.]:EDBT.2014:571-582.
[24]GUERRAOUI R,KERMARREC A M,PATRA R,et al.D2P:distance-based differential privacy in recommenders[J].Proceedings of the VLDB Endowment,2015,8(8):862-873.
[25]LIU X,LIU A,ZHANG X,et al.When differential privacy meets randomized perturbation:a hybrid approach for privacy-preserving recommender system[C]//Proceedings of International Conference on Database Systems for Advanced Applications.Berlin,Germany:Springer,2017:576-591.
[26]SHEN Y,JIN H.EpicRec:towards practical differentially private framework for personalized recommendation[C]//Proceedings of 2016 ACM SIGSAC Conference on Computer and Communications Security.New York,USA:ACM Press,2016:180-191.
[27]GIONIS A,INDYK P,MOTWANI R.Similarity search in high dimensions via hashing[C]//Proceedings of the 25th International Conference on Very Large Data Bases.[S.l.]:Morgan Kaufmann Publishers Inc.,1999:518-529.
[28]史世泽.局部敏感哈希算法的研究[D].西安:西安电子科技大学,2013.
[29]陈志伟,杜敏,杨亚涛,等.基于RSA和Paillier的同态云计算方案[J].计算机工程,2013,39(7):35-39. |