[1] 齐法制, 黄秋兰, 胡皓, 等.高能同步辐射光源科学数据处理平台规划与设计[J].数据与计算发展前沿, 2020, 2(2):40-58. QI F Z, HUANG Q L, HU H, et al.The design of science data platform for high energy photon source[J].Frontiers of Data & Computing, 2020, 2(2):40-58.(in Chinese) [2] RAHMAN M, HAMADA M, SHIN J.The impact of state-of-the-art techniques for lossless still image compression[J].Electronics, 2021, 10(3):360. [3] HUFFMAN D A.A method for the construction of minimum-redundancy codes[J].Proceedings of the IRE, 1952, 40(9):1098-1101. [4] WITTEN I H, NEAL R M, CLEARY J G.Arithmetic coding for data compression[J].Communications of the ACM, 1987, 30(6):520-540. [5] SINGH H.Introduction to image processing[M].Berkeley, USA:Apress:2019. [6] PNG(Portable Network Graphics) specification, version 1.2[EB/OL].[2022-01-11].http://www.libpng.org/pub/png/spec/1.2/PNG-Filters.html. [7] SNEYERS J, WUILLE P.FLIF:Free lossless image format based on MANIAC compression[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2016:66-70. [8] WEINBERGER M J, SEROUSSI G, SAPIRO G.The LOCO-I lossless image compression algorithm:principles and standardization into JPEG-LS[J].IEEE Transactions on Image Processing, 2000, 9(8):1309-1324. [9] CHRISTOPOULOS C, SKODRAS A, EBRAHIMI T.The JPEG 2000 still image coding system:an overview[J].IEEE Transactions on Consumer Electronics, 2000, 46(4):1103-1127. [10] NIEDERMAYER M.FFV1 video codec specification[EB/OL].[2022-01-11].https://www.ffmpeg.org/˜michael/ffv1.html. [11] MENTZER F, AGUSTSSON E, TSCHANNEN M, et al.Practical full resolution learned lossless image compression[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:10621-10630. [12] MENTZER F, GOOL L V, TSCHANNEN M.Learning better lossless compression using lossy compression[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:6638-6647. [13] HO J, LOHN E, ABBEEL P.Compression with flows via local bits-back coding[EB/OL].[2022-01-11].https://arxiv.org/abs/1905.08500. [14] SILVA M, PRATAS D, PINHO A J.Efficient DNA sequence compression with neural networks[J].GigaScience, 2020, 9(11):119. [15] LUO J Q, WU J J, ZHAO S H, et al.Lossless compression for hyperspectral image using deep recurrent neural networks[J].International Journal of Machine Learning and Cybernetics, 2019, 10(10):2619-2629. [16] GOYAL M, TATWAWADI K, CHANDAK S, et al.DeepZip:lossless data compression using recurrent neural networks[EB/OL].[2022-01-11].https://www.doc88.com/p-9002566521754.html. [17] GOYAL M, TATWAWADI K, CHANDAK S, et al.DZip:improved general-purpose loss less compression based on novel neural network modeling[C]//Proceedings of 2021 Data Compression Conference(DCC).Washington D.C., USA:IEEE Press, 2021:153-162. [18] ZHANG H L, CRICRI F, TAVAKOLI H R, et al.Lossless image compression using a multi-scale progressive statistical model[EB/OL].[2022-01-11].https://arxiv.org/abs/2108.10551. [19] ZHANG S, KANG N, RYDER T, et al.iFlow:numerically invertible flows for efficient lossless compression via a uniform coder[EB/OL].[2022-01-11].https://arxiv.org/abs/2111.00965v1. [20] REED S, OORD A V D, KALCHBRENNER N, et al.Parallel multiscale autoregressive density estimation[EB/OL].[2022-01-11].https://arxiv.org/abs/1703.03664. [21] KHAN N, IQBAL K, MARTINI M G.Time-aggregation-based lossless video encoding for neuromorphic vision sensor data[J].IEEE Internet of Things Journal, 2021, 8(1):596-609. [22] ZAR J H.Spearman rank correlation[EB/OL].[2022-01-11].https://onlinelibrary.wiley.com/doi/abs/10.1002/0470011815.b2a15150. [23] WANG Z, BOVIK A C, SHEIKH H R, et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004, 13(4):600-612. [24] STAROVOYTOV V V, ELDAROVA E E, ISKAKOV K T.Comparative analysis of the SSIM index and the pearson coefficient as a criterion for image similarity[J].Eurasian Journal of Mathematical and Computer Applications, 2020, 8(1):76-90. [25] BAI S J, KOLTER J Z, KOLTUN V.An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL].[2022-01-11].https://arxiv.org/abs/1803.01271. [26] CHEN Y P, FAN H Q, XU B, et al.Drop an Octave:reducing spatial redundancy in convolutional neural networks with octave convolution[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:3434-3443. |