[1] MAO Yimin,WANG Jiawei,LU Xinrong.Uncertain EFCM-ID clustering algorithm based on general distributed interval number[J].Computer Engineering,2018,44(10):175-181,189.(in Chinese)毛伊敏,王嘉炜,卢欣荣.基于一般分布区间数的不确定EFCM-ID聚类算法[J].计算机工程,2018,44(10):175-181,189. [2] WU Xiaolin,CAO Fuyuan.An unsupervised outlier detection algorithm for categorical matrix-object data[J].Journal of Shenzhen University(Science and Engineering),2019,36(1):33-42.(in Chinese)吴晓林,曹付元.面向分类型矩阵数据的无监督孤立点检测算法[J].深圳大学学报(理工版),2019,36(1):33-42. [3] CAO Fuyuan,YU Liqin,HUANG Zhexue,et al.K-mw-modes:an algorithm for clustering categorical matrix-object data[J].Applied Soft Computing,2017,57:605-614. [4] JAIN A,MYRTY M,FLYNN P.Data clustering:a review[J].ACM Computing Surveys,1999,31(3):264-323. [5] LI Na,ZHONG Cheng.Unsupervised anomaly detection based on partition and agglomerative hierarchical clustering[J].Computer Engineering,2008,34(2):120-123,126.(in Chinese)李娜,钟诚.基于划分和凝聚层次聚类的无监督异常检测[J].计算机工程,2008,34(2):120-123,126. [6] STREET W,MANGASARIAN O,BRADLEY P.Clustering via concave minimization[EB/OL].[2019-03-09].http://digital.library.wisc.edu/1793/65420. [7] BRADLEY P,FAYYAD U.Refining initial points for k-means clustering[C]//Proceedings of the 15th International Conference on Machine Learning.San Francisco,USA:Morgan Kaufmann,1998:154-165. [8] PEN J,LOZANO J,LARRAAGA P.An empirical comparison of four initalization methods for the k-means algorithm[J].Pattern Recognition Letters,1999,20:1027-1040. [9] HUANG Z,CLASSIF J M,NG K.A note on k-modes clustering[J].Journal of Classification,2003,20(2):257-261. [10] CAO Fuyuan,LIANG Jiye,BAI Liang.A new initialization method for categorical data clustering[J].Expert Systems with Applications,2009,36(7):10223-10228. [11] BAI Liang,LIANG Jiye,DANG Chuangyin,et al.A cluster centers initialization method for clustering categorical data[J].Expert Systems with Applications,2012,39(9):8022-8029. [12] WU Shu,JIANG Qingshan,HUANG Zhexue.A new initialization method for clustering categorical data[C]//Proceedings of Pacific-asia Conference on Advances in Knowledge Discovery & Data Mining.Berlin,Germany:Springer,2007:972-980. [13] BACHE K,LICHMAN M.UCI machine learning repository[EB/OL].[2019-03-09].http://archive.ics.uci.edu/ml. [14] CHAEPLYGINA V,TAX D M,LOOG M.Multiple instance learning with bag dissimilarities[J].Pattern Recognition,2015,48(1):264-275. [15] SRINIVASAN A,MUGGLETON S,KING R.Comparing the use of background knowledge by inductive logic programming systems[C]//Proceedings of the 5th International Workshop on Inductive Logic Programming.Berlin,Germany:Springer,1995:222-235. [16] KANDEMIR M,HAMPRECHT F A.Computer-aided diagnosis from weak supervision:a benchmarking study[J].Computerized Medical Imaging and Graphics,2015,42:44-50. [17] ANDREWS S,TSOCHANTARIDIS I.HOFMANN T.support vector machines for multiple-instance learning[C]//Proceedings of Conference on Advances in Neural Information Processing Systems.Cambridge,USA:The MIT Press,2002. [18] RAY S,CRAVEN M.Learning statistical model repository[EB/OL].[2019-03-09].http://archive.ics.uci.edu/ml. [19] STREHL A,GHOSH J.Cluster ensembles——a knowledge reuse framework for combining multiple partitions[J].Journal of Machine Learning Research,2003,3:583-617. [20] LIANG Jiye,BAI Liang,DANG Chuangyin,et al.The k-means type algorithms versus imbalanced data distributions[J].IEEE Transactions on Fuzzy Systems,2012,20(4):728-745. |