[1] CARPENTER P A,JUST M A,SHELL P.What one intelligence test measures:a theoretical account of the processing in the Raven progressive matrices test[J].Psychological Review,1990,97(3):404-431. [2] RAVEN J C.Mental tests used in genetic studies:the performance of related individuals on tests mainly educative and mainly reproductive[D].London,UK:University of London,1936. [3] RAVEN J.Raven progressive matrices[M].Berlin,Germany:Springer,2003. [4] DOMINO G,DOMINO M L.Psychological testing:an introduction[M].2nd ed.Cambridge,UK:Cambridge University Press,2006. [5] MAŁKINKI M,MANZIUK J.Deep learning methods for abstract visual reasoning:a survey on Raven's progressive matrices[EB/OL].[2022-03-17].https://arxiv.org/abs/2201.12382. [6] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [7] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2022-03-17].https://arxiv.org/abs/1409.1556. [8] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [9] MAŁKINKI M,MANDZIUK J.A review of emerging research directions in abstract visual reasoning[J].Information Fusion,2023,91:713-736. [10] ZHENG K,ZHA Z,WEI W.Abstract reasoning with distracting features[EB/OL].[2022-03-17].https://arxiv.org/abs/1912.00569. [11] 丁硙,周枫,庙介璞,等.基于跨事件理论的新闻事件时序关系识别方法[J].计算机工程,2017,43(6):189-194.DING W,ZHOU F,MIAO J P,et al.Temporal relation recognition method for news events based on cross event theory[J].Computer Engineering,2017,43(6):189-194.(in Chinese) [12] HERSCHE M,ZEQIRI M,BENINI L,et al.A neuro-vector-symbolic architecture for solving Raven's progressive matrices[EB/OL].[2022-03-17].https://arxiv.org/abs/2203.04571. [13] ZHANG C,GAO F,JIA B X,et al.RAVEN:a dataset for relational and analogical visual reasoning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2020:5312-5322. [14] ZHANG C,JIA B,GAO F,et al.Learning perceptual inference by contrasting[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2019:1075-1087. [15] ZHUO T,KANKANHALLI M.Effective abstract reasoning with dual-contrast network[EB/OL].[2022-03-17].https://arxiv.org/abs/2205.13720. [16] HU S,MA Y,LIU X,et al.Stratified rule-aware network for abstract visual reasoning[C]//Proceedings of 2021 AAAI Conference on Artificial Intelligence.Palo Alto,USA:AAAI Press,2021:1567-1574. [17] BENNY Y,PEKAR N,WOLF L.Scale-localized abstract reasoning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2021:12557-12565. [18] ZAGORUYKO S,KOMODAKIS N.Learning to compare image patches via convolutional neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:4353-4361. [19] 张婷.基于注意力机制的图像内容理解与视觉推理算法研究[D].成都:电子科技大学,2021.ZHANG T.Research on image content understanding and visual reasoning algorithm based on attention mechanism[D].Chengdu:University of Electronic Science and Technology of China,2021.(in Chinese) [20] WANG Q,WU B,ZHU P,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2020:11531-11539,2020. [21] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:7132-7141. [22] 张学锋,李金晶.基于双注意力残差循环单幅图像去雨集成网络[J].软件学报,2021,32(10):3283-3292.ZHANG X F,LI J J.Single image de-raining using a recurrent dual-attention-residual ensemble network[J].Journal of Software,2021,32(10):3283-3292.(in Chinese) [23] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2018:3-19. [24] KINGMA D P,BA J.Adam:a method for stochastic optimization[EB/OL].[2022-03-17].https://arxiv.org/abs/1412.6980. [25] BARRETT D,HILL F,SANTORO A,et al.Measuring abstract reasoning in neural networks[C]//Proceedings of International Conference on Machine Learning.Washington D.C.,USA:IEEE Press,2018:511-520. [26] GREFF K,SRIVASTAVA R K,KOUTNIK J,et al.LSTM:a search space Odyssey[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(10):2222-2232. |