[1] WANG K, PENG X J, YANG J F, et al.Suppressing uncertainties for large-scale facial expression recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:6896-6905. [2] 徐琳琳, 张树美, 赵俊莉.构建并行卷积神经网络的表情识别算法[J].中国图象图形学报, 2019, 24(2):227-236. XU L L, ZHANG S M, ZHAO J L.Expression recognition algorithm for parallel convolutional neural networks[J].Journal of Image and Graphics, 2019, 24(2):227-236.(in Chinese) [3] VERMA M, KOBORI H, NAKASHIMA Y, et al.Facial expression recognition with skip-connection to leverage low-level features[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2019:51-55. [4] CHEN Y, LIU S.Deep partial occlusion facial expression recognition via improved CNN[C]//Proceedings of International Symposium on Visual Computing.Berlin, Germany:Springer, 2020:451-462. [5] 陈昌川, 王海宁, 黄炼, 等.一种基于局部表征的面部表情识别算法[J].西安电子科技大学学报, 2021(5):100-109. CHEN C C, WANG H N, HUANG L, et al.Facial expression recognition based on local representation[J].Journal of Xidian University, 2021(5):100-109.(in Chinese) [6] CAI J, MENG Z B, KHAN A S, et al.Island Loss for learning discriminative features in facial expression recognition[C]//Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition.Washington D.C., USA:IEEE Press, 2018:302-309. [7] 史浩, 邢瑜航, 陈炼.基于多尺度融合注意力机制的人脸表情识别研究[J].微电子学与计算机, 2022, 39(3):34-40. SHI H, XING Y H, CHEN L.Facial expression recognition based on multi-scale feature fusion and attention mechanism[J].Microelectronics & Computer, 2022, 39(3):34-40.(in Chinese) [8] LI S, DENG W H, DU J P.Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:2584-2593. [9] NGUYEN T V, ZHAO Q, YAN S C.Attentive systems:a survey[J].International Journal of Computer Vision, 2018, 126(1):86-110. [10] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[EB/OL].[2021-11-05].https://arxiv.org/pdf/1706.03762.pdf. [11] GUO J D, MA X, SANSOM A, et al.SPANet:spatial pyramid attention network for enhanced image recognition[C]//Proceedings of IEEE International Conference on Multimedia and Expo.Washington D.C., USA:IEEE Press, 2020:1-6. [12] 李迪, 计春雷, 刘松.基于异构分类器集成学习的情感分类方法研究[J].武汉大学学报(工学版), 2021, 54(10):975-982. LI D, JI C L, LIU S.Research on sentiment classification method based on ensemble learning of heterogeneous classifiers[J].Engineering Journal of Wuhan University, 2021, 54(10):975-982.(in Chinese) [13] WEN Y, ZHANG K, LI Z, et al.A discriminative feature learning approach for deep face recognition[C]//Proceedings of 2016 European Conference on Computer Visio.Berlin, Germany:Springer, 2016:499-515. [14] WANG F, CHENG J, LIU W Y, et al.Additive margin softmax for face verification[J].IEEE Signal Processing Letters, 2018, 25(7):926-930. [15] LUCEY P, COHN J F, KANADE T, et al.The extended Cohn-Kanade dataset(CK+):a complete dataset for action unit and emotion-specified expression[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2010:94-101. [16] BENGIO Y, GRANDVALET Y.No unbiased estimator of the variance of K-fold cross-validation[J].Journal of Machine Learning Research, 2004, 5(Sep):1089-1105. [17] GOODFELLOW I J, ERHAN D, LUC CARRIER P, et al.Challenges in representation learning:a report on three machine learning contests[J].Neural Networks, 2015, 64:59-63. [18] 苏志明, 王烈, 蓝峥杰.基于多尺度分层双线性池化网络的细粒度表情识别模型[J].计算机工程, 2021, 47(12):299-307, 315. SU Z M, WANG L, LAN Z J.Fine-grained expression recognition model based on multi-scale hierarchical bilinear pooling network[J].Computer Engineering, 2021, 47(12):299-307, 315.(in Chinese) [19] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [20] MENG Z B, LIU P, CAI J, et al.Identity-aware convolutional neural network for facial expression recognition[C]//Proceedings of the 12th IEEE International Conference on Automatic Face & Gesture Recognition.Washington D.C., USA:IEEE Press, 2017:558-565. [21] LOPES A T, DE AGUIAR E, DE SOUZA A F, et al.Facial expression recognition with convolutional neural networks:coping with few data and the training sample order[J].Pattern Recognition, 2017, 61:610-628. [22] YANG H Y, CIFTCI U, YIN L J.Facial expression recognition by de-expression residue learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:2168-2177. [23] WANG Y, WANG J C, LI Y J, et al.Facial expression recognition with fused handcraft features based on pixel difference local directional number pattern[J].Journal of Intelligent & Fuzzy Systems, 2021, 41(1):113-123. [24] LIU X Q, ZHOU F Y.Improved curriculum learning using SSM for facial expression recognition[J].The Visual Computer, 2020, 36(8):1635-1649. [25] SHI C P, TAN C, WANG L G.A facial expression recognition method based on a multibranch cross-connection convolutional neural network[J].IEEE Access, 2021, 9:39255-39274. [26] 冯杨, 刘蓉, 鲁甜.基于小尺度核卷积的人脸表情识别[J].计算机工程, 2021, 47(4):262-267. FENG Y, LIU R, LU T.Facial expression recognition based on small-scale kernel convolution[J].Computer Engineering, 2021, 47(4):262-267.(in Chinese) [27] CONNIE T, AL-SHABI M, CHEAH W P, et al.Facial expression recognition using a hybrid CNN-SIFT aggregator[EB/OL].[2021-11-05].https://arxiv.org/ftp/arxiv/papers/1608/1608.02833.pdf. |