[1] 谢行雨,王玲.基于纹理相似栈的超声图像分割方法[J].计算机工程,2019,45(2):240-244.XIE X Y,WANG L.Ultrasonic image segmentation method based on similar texture stacks[J].Computer Engineering,2019,45(2):240-244.(in Chinese) [2] 程仙国,王明军.融合SLIC与改进邻近传播聚类的彩色图像分割算法[J].计算机工程,2018,44(6):226-232.CHENG X G,WANG M J.Color image segmentation algorithm combining SLIC with improved affinity propagation clustering[J].Computer Engineering,2018,44(6):226-232.(in Chinese) [3] 张和平,李俊武.基于模糊c均值聚类算法的控制图模式识别[J].工业工程,2021,24(5):108-116.ZHANG H P,LI J W.Recognition of control chart patterns using fuzzy c-means algorithm[J].Industrial Engineering Journal,2021,24(5):108-116.(in Chinese) [4] 崔家俊.基于K-means聚类算法的专变用户负荷模式识别方法研究[D].天津:河北工业大学,2020.CUI J J.Research on the method of recognizing specific user load patterns based on K-means clustering algorithm[D].Tianjin:Hebei University of Technology,2020.(in Chinese) [5] MACQUEEN J.Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability.[S.l.]:University of California Press,1967:281-297. [6] HADI A S,KAUFMAN L,ROUSSEEUW P J.Finding groups in data:an introduction to cluster analysis[J].Technometrics,1992,34(1):111. [7] ESTER M,KRIEGEL H P,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of KDD'96.New York,USA:ACM Press,1996:226-231. [8] WANG W,YANG J,MUNTZ R.STING:a statistical information grid approach to spatial data mining[C]//Proceedings of the 23rd International Conference on Very Large Data Bases.Athens,Greece:[s.n.],1997:186-195. [9] DEMPSTER A P,LAIRD N M,RUBIN D B.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the Royal Statistical,Society Series B:Statistical Methodology,1977,39(1):1-22. [10] RODRIGUEZ A,LAIO A.Clustering by fast search and find of density peaks[J].Science,2014,344(6191):1492-1496. [11] GENG Y,LI Q Y,ZHENG R,et al.RECOME:a new density-based clustering algorithm using relative KNN kernel density[J].Information Sciences,2018,436/437:13-30. [12] 杨震,王红军.基于加权K近邻的改进密度峰值聚类算法[J].计算机应用研究,2020,37(3):667-671.YANG Z,WANG H J.Improved density peak clustering algorithm based on weighted K-nearest neighbor[J].Application Research of Computers,2020,37(3):667-671.(in Chinese) [13] 代永杨,张清华,支学超.融合相对密度与近邻关系的密度峰值聚类算法[J].重庆邮电大学学报(自然科学版),2021,33(5):791-805.DAI Y Y,ZHANG Q H,ZHI X C.Density peaks clustering algorithm by combining relative density with nearest neighbor relationship[J].Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2021,33(5):791-805.(in Chinese) [14] 汤鑫瑶,张正军,储杰,等.基于自然最近邻的密度峰值聚类算法[J].计算机科学,2021,48(3):151-157.TANG X Y,ZHANG Z J,CHU J,et al.Density peaks clustering algorithm based on natural nearest neighbor[J].Computer Science,2021,48(3):151-157.(in Chinese) [15] LIU Y H,MA Z M,YU F.Adaptive density peak clustering based on K-nearest neighbors with aggregating strategy[J].Knowledge-Based Systems,2017,133:208-220. [16] LIU R,WANG H,YU X.Shared-nearest-neighbor-based clustering by fast search and find of density peaks[J].Information Sciences,2018,450:200-226. [17] 赵燕伟,朱芬,桂方志,等.融合可拓关联函数的密度峰值聚类算法[J].小型微型计算机系统,2019,40(12):2512-2518.ZHAO Y W,ZHU F,GUI F Z,et al.Density peak clustering algorithm based on extension correlation function[J].Journal of Chinese Computer Systems,2019,40(12):2512-2518.(in Chinese) [18] ZOU X L,ZHU Q S,YANG R L.Natural nearest neighbor for isomap algorithm without free-parameter[J].Advanced Materials Research,2011,219/220:994-998. [19] STEVENS S S.Mathematics,measurement,and psychophysics[M]//STEVENS S.Handbook of experimental psychology.New York,USA:Wiley,1951:1-49. [20] 黄金龙.基于自然最近邻的无参聚类算法研究[D].重庆:重庆大学,2014.HUANG J L.Study on non-parametric clustering based on natural nearest neighborhood[D].Chongqing:Chongqing University,2014.(in Chinese) [21] FOWLKES E B,MALLOWS C L.A method for comparing two hierarchical clusterings[J].Journal of the American Statistical Association,1983,78(383):553-569. [22] VINH N X,EPPS J,BAILEY J.Information theoretic measures for clusterings comparison:variants,properties,normalization and correction for chance[J].Journal of Machine Learning Research,2010,11:2837-2854. [23] JAIN A K,LAW M H C.Data clustering:a user's dilemma[C]//Proceedings of International Conference on Pattern Recognition and Machine Intelligence.Berlin,Germany:Springer,2005:1-10. [24] ZAHN C T.Graph-theoretical methods for detecting and describing gestalt clusters[J].IEEE Transactions on Computers,1971,100(1):68-86. [25] FU L M,MEDICO E.FLAME,a novel fuzzy clustering method for the analysis of DNA microarray data[J].BMC Bioinformatics,2007,8:3. [26] DUA D,GRAFF C.UCI machine learning repository[EB/OL].[2022-01-10].http://archive.ics.uci.edu/ml. |