[1] CHEN X, MA H, WAN J, et al.Multi-view 3D object detection network for autonomous[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C, USA:IEEE Press, 2017:652-660. [2] GEIGER A, LENZ P, URTASUN R, et al.Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C, USA:IEEE Press, 2012:3354-3361. [3] MARCHAND E, UCHIYAMA H, SPINDLER F.Pose estimation for augmented reality:a hands-on survey[J].IEEE Transactions on Visualization and Computer Graphics, 2016, 22(12):2633-2651. [4] 钟诚, 周浩杰, 韦海亮.一种基于注意力机制的三维点云物体识别方法[J].计算机技术与发展, 2020, 30(4):41-45. ZHONG C, ZHOU H J, WEI H L.A 3D point cloud object recognition method based on attention mechanism[J].Computer Technology and Development, 2020, 30(4):41-45.(in Chinese) [5] XU M, DING R, ZHAO H, et al.PAConv:position adaptive convolution with dynamic kernel assembling on point clouds[C]//Proceedings of 2021 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C, USA:IEEE Press, 2021:3173-3182. [6] COLLET A, MARTINEZ M, SRINIVASA S S.The MOPED framework:object recognition and pose estimation for manipulation[J].The International Journal of Robotics Research, 2011, 30(10):1284-1306. [7] TREMBLAY J, TO T, SUNDARALINGAM B, et al.Deep object pose estimation for semantic robotic grasping of household objects[EB/OL].[2021-10-11].https://arxiv.org/abs/1809.10790. [8] QI C.R, YI L, SU H, GUIBAS L J.PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of 2017 Conference on Neural Information Processing Systems.Cambridge, USA:MIT Press, 2017:5099-5108. [9] LIU Y, FAN B, XIANG S, et al.Relation-shape convolutional neural network for point cloud analysis[C]//Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C, USA:IEEE Press, 2019:8895-8904. [10] HU Q, YANG B, XIE L, et al.RandLA-Net:efficient semantic segmentation of large-scale point clouds[C]//Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C, USA:IEEE Press, 2019:11108-11117. [11] XU D, ANGUELOV D, JAIN A, et al.PointFusion:deep sensor fusion for 3D bounding box estimation[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C, USA:IEEE Press, 2018:244-253. [12] CHEN X, MA H, WAN J, et al.Multi-view 3D object detection network for autonomous driving[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C, USA:IEEE Press, 2017:1907-1915. [13] SU H, MAJI S, KALOGERAKIS E, et al.Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C, USA:IEEE Press, 2017:945-953. [14] FENG Y, ZHANG Z, ZHAO X, et al.GVCNN:group-view convolutional neural networks for 3d shape recognition[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C, USA:IEEE Press, 2018:264-272. [15] MATURANA D, SCHERER S.VoxNet:a 3D convolutional neural network for real-time object recognition[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C, USA:IEEE Press, 2018:922-928. [16] CHARLES R Q, HAO S, MO K C, et al.PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C, USA:IEEE Press, 2017:652-660. [17] ZHAO H S, JIANG L, JIA J Y, et al.Point transformer[EB/OL].[2021-10-11].https://arxiv.org/abs/2012.09164. [18] 朱威, 绳荣金, 汤如, 等.基于动态图卷积和空间金字塔池化的点云深度学习网络[J].计算机科学, 2020, 47(7):192-198. ZHU W, SHENG R J, TANG R, et al.Point cloud deep learning network based on dynamic graph convolution and spatial pyramid pooling[J].Computer Science, 2020, 47(7):192-198.(in Chinese) [19] LI Y, BU R, SUN M, et al.PointCNN:convolution on x-transformed points[J].Advances in Neural Information Processing Systems, 2018, 31:820-830. [20] 顾砾, 季怡, 刘纯平.基于多模态特征融合的三维点云分类方法[J].计算机工程, 2021, 47(2):279-284. GU L, JI Y, LIU C P.Classification method of three-dimensional point cloud based on multiple modal feature fusion[J].Computer Engineering, 2021, 47(2):279-284.(in Chinese) [21] 田钰杰, 管有庆, 龚锐.一种鲁棒的多特征点云分类分割深度神经网络[J].计算机工程, 2021, 47(11):234-240. TIAN Y J, GUAN Y Q, GONG R.A robust deep neural network for multi-feature point cloud classification and segmentation[J].Computer Engineering, 2021, 47(11):234-240.(in Chinese) [22] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of 2017 IEEE Conference on Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2017:5998-6008. [23] HAN Z Z, LU H L, LIU Z B, et al.3D2SeqViews:aggregating sequential views for 3D global feature learning by CNN with hierarchical attention aggregation[J].IEEE Transactions on Image Processing, 2019, 28(8):3986-3999. [24] HAN Z Z, SHANG M Y, LIU Z B, et al.SeqViews2SeqLabels:learning 3D global features via aggregating sequential views by RNN with attention[J].IEEE Transactions on Image Processing, 2019, 28(2):658-672. [25] LIU X, HAN Z, LIU Y S, et al.Point2sequence:learning the shape representation of 3D point clouds with an attention-based sequence to sequence network[C]//Proceedings of 2019 AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2019:8778-8785. |