作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (6): 262-270. doi: 10.19678/j.issn.1000-3428.0057920

• 图形图像处理 • 上一篇    下一篇

一种基于对抗学习的实时跟踪模型设计

李志鹏1, 张睿2   

  1. 1. 复旦大学 软件学院, 上海 201203;
    2. 复旦大学 计算机实验教学中心, 上海 201203
  • 收稿日期:2020-03-31 修回日期:2020-05-11 发布日期:2020-05-18
  • 作者简介:李志鹏(1993-),男,硕士研究生,主研方向为图像处理、机器学习、嵌入式开发;张睿,高级工程师。

Design of a Real-Time Tracking Model Based on Adversarial Learning

LI Zhipeng1, ZHANG Rui2   

  1. 1. School of Software, Fudan University, Shanghai 201203, China;
    2. Computer Teaching and Experiment Center, Fudan University, Shanghai 201203, China
  • Received:2020-03-31 Revised:2020-05-11 Published:2020-05-18
  • Contact: 教育部专项基金“大数据驱动的临床辅助诊断系统研究”(2018A11005)。 E-mail:17212010018@fudan.edu.cn

摘要: 目标跟踪指在视频帧中找到感兴趣目标的运动位置,广泛应用于环境感知、安防监控和无人驾驶等领域。为进行高效的目标跟踪,建立一种基于对抗学习和特征压缩的相关滤波器目标跟踪模型。为了同时兼顾精度与速度,在模型中引入特征提取优化、特征压缩和特征聚合等步骤。在提取图像特征前,采用对抗学习方法解决特征提取模型中训练数据与任务数据分布不匹配的问题。在特征压缩阶段,应用双通道自编码器结构和特征聚合来增强模型对图像风格的泛化能力。实验结果表明,与非实时跟踪算法相比,该模型在精度损失不超过3%的情况下能取得明显的速度提升,其跟踪速度高达103FPS。

关键词: 目标跟踪, 对抗学习, 自编码器, 相关滤波器, 表示学习

Abstract: Target tracking is the process of finding the position of the moving target in the video frame, and is widely used in the fields of environmental perception, security monitoring and unmanned driving.To improve the efficiency of target tracking, this paper proposes a target tracking model using correlation filter based on adversarial learning and feature compression.The model includes the optimization of feature extraction, feature compression and feature aggregation, which improve both the accuracy and the speed of the model.Before feature extraction, adversarial learning is used to solve the problem of the mismatch of training data and task data distribution in the feature extraction model.In the stage of feature compression, a two-way autoencoder structure and feature aggregation are used to enhance the generalization of the image style.Experimental results show that compared with the non-real-time tracking algorithm, the model significantly improves the speed, with the tracking rate reaching 103FPS.At the same time, the loss of the model accuracy is within 3%.

Key words: target tracking, adversarial learning, autoencoder, correlation filter, representation learning

中图分类号: