[1] DONG C, LOY C C, HE K, et al.Learning a deep convolutional network for image super-resolution[C]//Proceedings of 2014 European Conference on Computer Vision.Berlin, Germany:Springer, 2014:184-199. [2] DONG C, LOY C C, HE K, et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. [3] KIM J, LEE J K, LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:109-112. [4] KIM J, LEE J K, LEE K M.Deeply-recursive convolutional network for image super resolution[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:45-76. [5] ZHANG Y, TIAN Y, KONG Y, et al.Residual dense network for image super-restoration[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:37-45. [6] LIM B, SON S, KIM H, et al.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2017:71-98. [7] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-06-01].https://arxiv.org/abs/1409.1556. [8] JOHNSON J, ALAHI A, FEI-FEI L.Perceptual losses for real-time style transfer and super-resolution[EB/OL].[2020-06-01] https://arxiv.org/abs/1603.08155. [9] LEDIG C, THEIS L, HUSZAR F, et al.Photo-realistic single image super-resolution using a generative adversarial network[J].IEEE Computer Society, 2016, 11(1):1-14. [10] BULAT A, TZIMIROPOULOS G.Super-FAN:integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:42-53. [11] PARK S, SON H, CHO S, et al.SRFeat:single image super-resolution with feature discrimination[C]//Proceedings of 2018 European Conference on Computer Vision.Berlin, Germany:Springer, 2018:32-53. [12] ZHANG K, ZUO W, ZHANG L.Learning a single convolutional super-resolution network for multiple degradations[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA:IEEE Press, 2018:124-133. [13] BULAT A, YANG J, TZIMIROPOULOS G.To learn image super-resolution, use a GAN to learn how to do image degradation first[C]//Proceedings of 2018 European Conference on Computer Vision.Berlin, Germany:Springer, 2018:39-47. [14] WANG X, YU K, WU S, et al.Esrgan:enhanced super-resolution generative adversarial networks[C]//Proceedings of 2018 European Conference on Computer Vision workshops.Berlin, Germany:Springer, 2018:78-97. [15] WANG X, YU K, DONG C, et al.Recovering realistic texture in image super-resolution by deep spatial feature transform[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:2160-2176. [16] LARSEN A B L, SONDERBY SOREN KAAE, WINTHER O, et al.Autoencoding beyond pixels using a learned similarity metric[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:1191-1208. [17] SUN J, CAO W, XU Z, et al.Learning a convolutional neural network for non-uniform motion blur removal[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:22-43. [18] LI XU, JIMMY SJ REN, CE LIU, et al.Deep convolutional neural network for image deconvolution[C]//Proceedings of 2014 Conference on Neural Information Processing Systems.[S.l.]:MIT Press, 2014:1121-1132. [19] LEIBE B, MATAS J, SEBE N, et al.A neural approach to blind motion deblurring[EB/OL].[2020-06-01].https://www.researchgate.net/publication/301839917_A_Neural_Approach_to_Blind_Motion_Deblurring. [20] BORACCHI G, FOI A.Modeling the performance of image restoration from motion blur[J].IEEE Transactions on Image Processing, 2012, 21(8):3502-3517. |