作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (9): 266-273. doi: 10.19678/j.issn.1000-3428.0058848

• 图形图像处理 • 上一篇    下一篇

基于生成对抗网络的多幅离焦图像超分辨率重建算法

斯捷1, 肖雄2, 李泾3, 马明勋2, 毛玉星2   

  1. 1. 浙江图盛输变电工程有限公司, 浙江 温州 325000;
    2. 重庆大学电气工程学院, 重庆 400044;
    3. 国网浙江电力有限公司温州供电公司, 浙江 温州 325000
  • 收稿日期:2020-07-06 修回日期:2020-09-03 发布日期:2020-09-11
  • 作者简介:斯捷(1976-),男,工程师,主研方向为计算机视觉;肖雄,硕士研究生;李泾,工程师;马明勋,硕士研究生;毛玉星,副教授、博士。
  • 基金资助:
    国家重点研发计划“物联网智能感知终端平台系统与应用验证”(2018YFB2100100)。

Super-Resolution Reconstruction Algorithm with Multi-Frame Defocused Images Based on Generative Adversarial Network

SI Jie1, XIAO Xiong2, LI Jing3, MA Mingxun2, MAO Yuxing2   

  1. 1. Zhejiang Tusheng Transmission and Transformation Engineering Co., Ltd., Wenzhou, Zhejiang 325000, China;
    2. School of Electrical Engineering, Chongqing University, Chongqing 400044, China;
    3. Wenzhou Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd., Wenzhou, Zhejiang 325000, China
  • Received:2020-07-06 Revised:2020-09-03 Published:2020-09-11

摘要: 为提高超分辨率算法重建出的图像质量,提出融合多幅离焦图像的超分辨率重建算法。以离焦图像作为切入点,利用自编码器提取离焦图像中的重要特征,根据空间特征变换层结构,将离焦特征与原始特征相结合,完成图像的超分辨率重建。在Celeb A人脸数据集上进行实验,结果表明,与传统插值算法及SRGAN算法相比,所提算法在大多数情况下能获得更高峰值信噪比及结构相似性数值,能生成质量更高的重建图像。

关键词: 自编码器, 图像特征提取, 生成对抗网络, 超分辨率重建, 深度神经网络

Abstract: In order to improve the quality of the reconstructed images, a super-resolution reconstruction algorithm using multi-frame defocused images is proposed.The algorithm employs an auto-encoder to extract the important features in the defocused images, and the layer structure is transformed based on spatial features to combine the defocused features with the original features, so the super-resolution reconstruction of the image is completed.The experimental results on the Celeb A face data set show that in most cases, the proposed algorithm provides a higher peak signal-to-noise ratio and structural similarity than the traditional interpolation algorithm and the SRGAN algorithm.This super-resolution algorithm based on multi-frame defocused images can generate better reconstructed images.

Key words: auto encoder, image feature extraction, Generative Adversarial Net(GAN), Super Resolution(SR), deep neural network

中图分类号: