[1] 余宪.基于生成对抗网络的雷达高分辨距离像生成方法研究[D].厦门:厦门大学, 2019. YU X.A study on radar High-Resolution Response Profile(HRRP) generation method based on generating confrontation network[D].Xiamen:Xiamen University, 2019.(in Chinese) [2] WANG J J, LIU Z, XIE R, et al.Radar HRRP target recognition based on dynamic learning with limited training data[J].Remote Sensing, 2021, 13(4):750. [3] 郭泽坤, 田隆, 韩宁, 等.采用CNN-SSD的雷达HRRP小样本目标识别方法[J].西安电子科技大学学报, 2021, 48(2):7-14. GUO Z K, TIAN L, HAN N, et al.Radar HRRP based few-shot target recognition with CNN-SSD[J].Journal of Xi'an University of Electronic Science and Technology, 2021, 48(2):7-14.(in Chinese). [4] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial networks[EB/OL].[2021-02-10].https://arxiv.org/pdf/1406.2661.pdf. [5] 苏炯铭, 刘鸿福, 项凤涛, 等.深度神经网络解释方法综述[J].计算机工程, 2020, 46(9):1-15. SU J M, LIU H F, XIANG F T, et al.Survey of interpretation methods for deep neural networks[J]. Computer Engineering, 2020, 46(9):1-15.(in Chinese) [6] 柴梦婷, 朱远平.生成式对抗网络研究与应用进展[J]. 计算机工程, 2019, 45(9):222-234. CHAI M T, ZHU Y P.Research and application progress of generative adversarial networks[J].Computer Engineering, 2019, 45(9):222-234.(in Chinese) [7] 宋益恒, 王彦华, 李阳, 等.基于深度生成网络的雷达HRRP生成技术[J].信号处理, 2019, 35(6):1118-1122. SONG Y H, WANG Y H, LI Y, et al.Radar HRRP generation technology based on depth generation network[J].Signal Processing, 2019, 35(6):1118-1122.(in Chinese) [8] MAO X, LI Q, XIE H, et al.Least squares generative adversarial networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2016:2813-2821. [9] KARRAS T, AILA T, LAINE S, et al.Progressive growing of GANs for improved quality, stability, and variation[EB/OL].[2021-02-10].https://arxiv.org/pdf/1710. 10196.pdf. [10] HUANG X, LI Y, POURSAEED O, et al.Stacked generative adversarial networks[EB/OL].[2021-02-10].https://arxiv.org/pdf/1612.04357v4.pdf. [11] SHAHAM T R, DEKEL T, MICHAELI T.SinGAN:learning a generative model from a single natural image[C]//Proceedings of 2019 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press:2019:4569-4579. [12] EGHBAL-ZADEH H.Mixture density generative adversarial networks[EB/OL].[2021-02-10].https://arxiv.org/pdf/1811.00152.pdf. [13] MONTUFAR G F, PASCANU R, CHO K, et al.On the number of linear regions of deep neural networks[C]//Proceedings of NIPS'14.Vancouver, Canada:[s.n.], 2014:2924-2932. [14] HE K M, ZHANG X, REN S, et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Ppattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [15] 颜贝.基于对抗式网络的图像数据生成技术研究[D].成都:中国科学院光电技术研究所, 2020. YAN B.A study on image data generation technology based on confrontational network[D].Chengdu:Institute of Optoelectronic Technology, Chinese Academy of Sciences, 2020.(in Chinese) [16] BERTHELOT D, SCHUMM T, METZ L.BEGAN:boundary equilibrium generative adversarial networks[EB/OL].(2017-05-31)[2021-02-10].https://arxiv.org/pdf/1703.10717.pdf. [17] 向前, 王晓丹, 李睿, 等.基于DCNN的弹道中段目标HRRP图像识别[J].系统工程与电子技术, 2020, 42(11):2426-2433. XIANG Q, WANG X D, LI R, et al.HRRP image recognition based on DCNN ballistic midcourse target[J].Systems Engineering and Electronic Technology, 2020, 42(11):2426-2433.(in Chinese) [18] BARRATT S, SHARMA R.A note on the inception score[EB/OL].[2021-02-10].https://arxiv.org/pdf/1801.01973.pdf. [19] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al.GANs trained by a two time-scaleupdate rule converge to a local Nash equilibrium[C]//Proceedings of NIPS'17.Long Beach, USA:[s.n.], 2017:6626-6637. [20] BINKOWSKI M, SUTHERLAND D J, ARBEL M, et al.Demystifying MMD GANs[EB/OL].[2021-02-10].https://www.researchgate.net/publication/322306034_Demystifying_MMD_GANs. [21] RADFORD A, METZ L, CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].[2021-02-10].https://arxiv.org/pdf/1511.06434.pdf. [22] ARJOVSKY M, CHINTALA S, BOTTOU L E O.Wasserstein GAN[EB/OL].[2021-02-10].https://arxiv.org/pdf/1701.07875.pdf. [23] GULRAJANI I, AHMED F, ARJOVSKY M, et al.Improved training of Wasserstein GANs[EB/OL].[2021-02-10].https://arxiv.org/pdf/1704.00028.pdf. [24] MAO X, LI Q, XIE H, et al.Least squares generative adversarial networks[EB/OL].[2021-02-10].https://arxiv.org/pdf/1611.04076.pdf. |