[1] 陶源,史建民.全国苹果种植收益波动特征及其影响因素分析——基于1991-2014年苹果种植收益数据的实证分析[J].中国农业资源与区划,2017,9(38):167-173. TAO Y,SHI J M.Analysis on the fluctuation characteristics and influencing factors of apple planting income in China——an empirical analysis based on the data of apple planting income from 1991 to 2014[J].Journal of China Agricultural Resources and Regional Planning,2017,9(38):167-173.(in Chinese) [2] LIU B,ZHANG Y,HE D,et al.Identification of apple leaf diseases based on deep convolutional neural networks[J].Symmetry,2018,10(1):11-21. [3] 霍迎秋,唐晶磊,尹秀珍,等.基于压缩感知理论的苹果病害识别方法[J].农业机械学报,2013,44(10):227-232. HUO Y Q,TANG J L,YIN X Z,et al.Apple disease recognition based on compressive sensing[J].Transactions of the Chinese Society of Agricultural Engineering,2013,44(10):227-232.(in Chinese) [4] 刘洋,冯全,王书志.基于轻量级CNN的植物病害识别方法及移动端应用[J].农业工程学报,2019,35(17):194-204. LIU Y,FENG Q,WANG S Z.Plant disease identification method based on lightweight CNN and mobile application[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(17):194-204.(in Chinese) [5] 王聃,柴秀娟.机器学习在植物病害识别研究中的应用[J].中国农机化学报,2019,40(9):171-180. WANG D,CHAI X J.Application of machine learning in plant diseases recognition[J].Journal of Chinese Agricultural Mechanization,2019,40(9):171-180.(in Chinese) [6] 李鑫星,朱晨光,白雪冰,等.基于可见光谱和支持向量机的黄瓜叶部病害识别方法研究[J].光谱学与光谱分析,2019,39(7):2250-2256. LI X X,ZHU C G,BAI X B,et al.Recognition method of cucumber leaves based on visual spectrum and support vector machine[J].Spectroscopy and Spectral Analysis,2019,39(7):2250-2256.(in Chinese) [7] LIU B,TAN C,LI S,et al.A data augmentation method based on generative adversarial networks for grape leaf disease identification[J].IEEE Access,2020,8:102188-102198. [8] 孙俊,谭文军,毛罕平,等.基于改进卷积神经网络的多种植物叶片病害识别[J].农业工程学报,2017,33(19):209-215. SUN J,TAN W J,MAO H P,et al.Recognition of multiple plant diseases based on improved convolutional neural network[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(19):209-215.(in Chinese) [9] 黄双萍,孙超,齐龙,等.基于深度卷积神经网络的水稻穗瘟病检测方法[J].农业工程学报,2017,33(20):169-176. HUANG S P,SUN C,QI L,et al.Rice panicle blasr identification method based on deep convolution neural network[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(20):169-176.(in Chinese) [10] 张敏,刘杰,蔡高勇.基于卷积神经网络的柑橘溃疡病识别方法[J].计算机应用,2018,38(S1):48-52,76. ZHANG M,LIU J,CAI G Y.Recognition method of citrus canker disease based on convolution neural network[J].Journal of Computer Applications,2018,38(S1):48-52,76. [11] XIE X,MA Y,LIU B,et al.A deep-learning-based real-time detector for grape leaf diseases using improved convolutional neural networks[J].Frontiers in Plant Science,2020,11(751):1-13. [12] 张云龙,袁浩,张晴晴,等.基于颜色特征和差直方图的苹果叶部病害识别方法[J].江苏农业科学,2017,45(14):171-174. ZHANG Y L,YUAN H,ZHANG Q Q,et al.Recognition method of apple leaves disease based on color feature and difference histogram[J].Jiangsu Agricultural Sciences,2017,45(14):171-174.(in Chinese) [13] 师韵,黄文准,张善文.基于二维子空间的苹果病害识别方法[J].计算机工程与应用,2017,53(22):180-184. SHI Y,HUANG W Z,ZHANG S W.Apple disease recognition based on two-dimensionality subspace learning[J].Computer Engineering and Applications,2017,53(22):180-184.(in Chinese) [14] ZHANG C,ZHANG S,YANG J,et al.Apple leaf identification using genetic algorithm and correlation based feature selection method[J].International Journal of Agricultural and Biological Engineering,2017,10(2):74-83. [15] BARANWAL S,KHANDELWAL S,ARORA A.Deep learning convolutional neural network for apple leaves disease detection[J].Social Science Electronic Publishing,2019,1:260-267. [16] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149. [17] LIN T,PIOTR D,ROSS G,et al.Feature pyramid networks for object detection[C]//Proceedings of the 37th International Conference on Distributed Computing Systems Workshops.Washington D.C.,USA:IEEE Press,2017:2117-2125. [18] JIANG B,LUO R,MAO J,et al.Acquisition of localization confidence for accurate object detection[C]///Proceedings of European Conference on Computer Vision.Berlin,Germang:Springer,2018:784-799. [19] 李东洁,李若昊.基于改进Faster RCNN的马克杯缺陷检测方法[J].激光与光电子学进展,2020,57(4):1-8. LI D J,LI R H.Mug defect detection method based on improved Faster RCNN[J].Laser and Optoelectronics Progress,2020,57(4):1-8.(in Chinese) [20] 谢金衡,张炎生.基于深度残差和特征金字塔网络的实时多人脸关键点定位算法[J].计算机应用,2019,39(12):3659-3664. XIE J H,ZHANG Y S.Real-time multi-face landmark localization algorithm based on deep residual and feature pyramid neural network[J].Journal of Computer Applications,2019,39(12):3659-3664.(in Chinese) [21] 乔婷,苏寒松,刘高华,等.基于改进的特征提取网络的目标检测算法[J].激光与光电子学进展,2019,56(23):1-6. QIAO T,SU H S,LIU G H,et al.Object detection algorithm based on improved feature extraction network[J].Laser and Optoelectronics Progress,2019,56(23):1-6.(in Chinese) [22] HUGO L,YOSHUA B,PASCAL L,et al.Exploring strategies for training deep neural networks[J].Journal of Machine Learning Research,2019,1:1-40. [23] CHAO P,TETE X,ZEMING L,et al.MegDet:a large mini-batch object detector[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:6181-6189. [24] MOLCHANOV P,TYREE S,KARRAS T,et al.Pruning convolutional neural networks for resource efficient inference[C]//Proceedings of International Conference on Learning Representation.Washington D.C.,USA:IEEE Press,2017:1-17. [25] 王艺皓,丁洪伟,李波,等.复杂场景下基于改进YOLOv3的口罩佩戴检测算法[J].计算机工程,2020,46(11):12-22. WANG Y H,DING H W,LI B,et al.Mask wearing detection algorithm based on improved YOLOv3 in complex scenes[J].Computer Engineering,2020,46(11):12-22.(in Chinese) [26] HE K,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:2961-2969. [27] 彭明霞,夏俊芳,彭辉.融合FPN的Faster R-CNN复杂背景下棉田杂草高效识别方法[J].农业工程学报,2019,35(20):202-209. PENG M X,XIA J F,PENG H.Efficient recognition of cotton and weed in field based on Faster R-CNN by integrating FPN[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(20):202-209.(in Chinese) |