[1] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multi-box detector[M].Berlin,Germany:Springer,2016:21-37. [2] KRIZHEVSKY A,SUTSKEVER I,HINTON G. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Washington D.C.,USA:IEEE Press,2012:1097-1105. [3] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1-8. [4] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:6517-6525. [5] REDMON J,FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2019-09-28].https://arxiv.org/abs/1804.02767. [6] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[EB/OL].[2019-09-28].https://arxiv.org/abs/1502.03167. [7] LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:936-944. [8] GAO Hongwei,HAN Xiaohong,ZHOU Daoxiang. Supernova object detection method based on improved Faster R-CNN[J].Computer Engineering,2020,46(10):282-288.(in Chinese)高宏伟,韩晓红,周稻祥.基于改进Faster R-CNN的超新星目标检测方法[J].计算机工程,2020,46(10):282-288. [9] GIRSHICK R.Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2015:1440-1448. [10] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149. [11] HE K M,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):386-397. [12] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [13] LIU Shu,QI Lu,QIN Haifang,et al.Path aggregation network for instance segmentation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press, 2018:1-9. [14] ZHOU Peng,NI Bingbing,GENG Cong,et al.Scale-transferrable object detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:528-537. [15] HUANG G,LIU Z,VAN D M L,et al.Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:2261-2269. [16] QIN Z,LI Z M,ZHANG Z N,et al.ThunderNet:towards real-time generic object detection[EB/OL].[2019-09-28].https://arxiv.org/abs/1903.11752. [17] SHELHAMER E,LONG J,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651. [18] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:common objects in context[M].Berlin,Germany:Springer,2014:740-755. [19] DENG J,DONG W,SOCHER R,et al.ImageNet:a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2009:248-255. [20] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327. [21] PANG Jiangmiao,CHEN Kai,SHI Jianping,et al.Libra R-CNN:towards balanced learning for object detection[EB/OL].[2019-09-28].https://arxiv.org/abs/1904.02701. |