[1] MIAO Xiangpeng.Identification and damage detection of catenary insulator based on image processing[D].Chengdu:Southwest Jiaotong University,2017.(in Chinese)苗向鹏.基于图像处理的接触网绝缘子识别与破损检测[D].成都:西南交通大学,2017. [2] TANG Mingwen,DAI Lihao,LIN Chaohui,et al.Application of unmanned aerial vehicle in inspecting transmission lines[J].Electric Power,2013,46(3):35-38.(in Chinese)汤明文,戴礼豪,林朝辉,等.无人机在电力线路巡视中的应用[J].中国电力,2013,46(3):35-38. [3] ZHANG Xiangquan,SU Jianjun.UAV inspection technology for overhead transmission lines[M].Beijing:China Electric Power Press,2016.(in Chinese)张祥全,苏建军.架空输电线路无人机巡检技术[M].北京:中国电力出版社,2016. [4] WANG Wei,LIU Guohai.Image edge detection of the insulator[J].Microcomputer Information,2008,24(27):308-309,154.(in Chinese)王伟,刘国海.绝缘子图像的边缘检测[J].微计算机信息,2008,24(27):308-309,154. [5] ZHAI Yongjie,WANG Di,ZHANG Muliu,et al.Fault detection of insulator based on saliency and adaptive morphology[J].Multimedia Tools and Applications,2017,76(9):12051-12064. [6] YAO Chunyu,JIN Lijun,YAN Shujia.Recognition of insulator string in power grid patrol images[J].Journal of System Simulation,2012,24(9):1818-1822.(in Chinese)姚春羽,金立军,闫书佳.电网巡检图像中绝缘子的识别[J].系统仿真学报,2012,24(9):1818-1822. [7] ZHANG Jingjing,HAN Jun,ZHAO Yabo,et al.Insulator recognition and defects detection based on shape perceptual[J].Journal of Image and Graphics,2014,19(8):1194-1201.(in Chinese)张晶晶,韩军,赵亚博,等.形状感知的绝缘子识别与缺陷诊断[J].中国图象图形学报,2014,19(8):1194-1201. [8] XU Yaoliang,ZHANG Shaocheng,YANG Ning,et al.An algorithm to extract insulator image from aerial image[J].Journal of Shanghai University of Electric Power,2011,27(5):515-518.(in Chinese)徐耀良,张少成,杨宁,等.航拍图像中绝缘子的提取算法[J].上海电力学院学报,2011,27(5):515-518. [9] WANG Yinli,YAN Bin.Vision based detection and location for cracked insulator[J].Computer Engineering and Design,2014,35(2):583-587.(in Chinese)王银立,闫斌.基于视觉的绝缘子"掉串"缺陷的检测与定位[J].计算机工程与设计,2014,35(2):583-587. [10] LUO Huan,TIAN Xiang.The electricity equipment image detection research based on improved Canny operator[J].Electrical Measurement & Instrumentation,2014,51(10):77-81.(in Chinese)罗桓,田翔.基于改进Canny算子的电力设备图像检测研究[J].电测与仪表,2014,51(10):77-81. [11] ZHAI Yongjie,WANG Di,ZHAO Zhenbing.Recognition method of insulator based on object proposals and structure research[J].Journal of North China Electric Power University(Natural Science Edition),2016,43(4):66-71,78.(in Chinese)翟永杰,王迪,赵振兵.基于目标建议与结构搜索的绝缘子识别方法[J].华北电力大学学报(自然科学版),2016,43(4):66-71,78. [12] JIANG Huilan,CUI Hubao,LIU Fei,et al.High voltage transmission line fault classification based on fuzzy logic and support vector machines[J].Electric Power,2005,38(3):13-17.(in Chinese)姜惠兰,崔虎宝,刘飞,等.基于模糊逻辑和支持向量机的高压输电线路故障分类器[J].中国电力,2005,38(3):13-17. [13] HOSANG J,BENENSON R,DOLLAR P,et al.What makes for effective detection proposals?[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(4):814-830. [14] WANG Wanguo,TIAN Bing,LIU Yue,et al.Study on the electrical devices detection in UAV images based on region based convolutional neural networks[J].Journal of Geo-Information Science,2017,19(2):256-263.(in Chinese)王万国,田兵,刘越,等.基于RCNN的无人机巡检图像电力小部件识别研究[J].地球信息科学学报,2017,19(2):256-263. [15] LI Junfeng,WANG Qinruo,LI Min.Electric equipment image recognition based on deep learning and random forest[J].High Voltage Engineering,2017,43(11):3705-3711.(in Chinese)李军锋,王钦若,李敏.结合深度学习和随机森林的电力设备图像识别[J].高电压技术,2017,43(11):3705-3711. [16] MA Peng,FAN Yanfang.Small sample smart substation power equipment component detection based on deep transfer learning[J].Power Grid Technology,2020,44(3):1148-1159.(in Chinese)马鹏,樊艳芳.基于深度迁移学习的小样本智能变电站电力设备部件检测[J].电网技术,2020,44(3):1148-1159. [17] REN S,HE K,GIRSHICK R,et al.Faster RCNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(6):1137-1149. [18] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2013:1879-1886. [19] GIRSHICK R.Fast RCNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2015:1440-1448. [20] WANG X,SHRIVASTAVA A,GUPTA A.A-Fast-RCNN:hard positive generation via adversary for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:3039-3048. [21] BYEON Y H,KWAK K C.A performance comparison of pedestrian detection using Faster RCNN and ACF[C]//Proceedings of the 6th IIAI International Congress on Advanced Applied Informatics.Washington D.C.,USA:IEEE Press,2017:858-863. [22] RENMON J,FARHADI A.YOLOv3:an incremental[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:1-6. |