1 |
李雪松, 张锲石, 宋呈群, 等. 自动驾驶场景下的轨迹预测技术综述. 计算机工程, 2023, 49 (5): 1- 11.
URL
|
|
LI X S, ZHANG Q S, SONG C Q, et al. Review of trajectory prediction technology in autonomous driving scenes. Computer Engineering, 2023, 49 (5): 1- 11.
URL
|
2 |
李松江, 耿兰兰, 王鹏. 基于改进Yolov4的车辆目标检测. 计算机工程, 2023, 49 (4): 272- 280.
URL
|
|
LI S J, GENG L L, WANG P. Vehicle target detection based on improved Yolov4. Computer Engineering, 2023, 49 (4): 272- 280.
URL
|
3 |
帅泽群, 李军, 张世义. 适合车载边缘计算的拥挤行人检测算法. 计算机工程与应用, 2023, 59 (4): 156- 164.
|
|
SHUAI Z Q, LI J, ZHANG S Y. Crowded pedestrian detection algorithm suitable for vehicle edge computing. Computer Engineering and Applications, 2023, 59 (4): 156- 164.
|
4 |
侯艳丽, 王鑫涛, 魏义仑, 等. 基于IMPSiamCAR孪生网络无人机目标跟踪算法. 计算机应用研究, 2023, 40 (1): 315- 320.
|
|
HOU Y L, WANG X T, WEI Y L, et al. Tracking algorithm of unmanned aerial vehicle targets based on IMPSiamCAR for siamese network. Application Research of Computers, 2023, 40 (1): 315- 320.
|
5 |
JIA X Y, ZHU C, LI M Z, et al. LLVIP: a visible-infrared paired dataset for low-light vision[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 3496-3504.
|
6 |
ZHAO Z X, BAI H W, ZHANG J S, et al. CDDFuse: correlation-driven dual-branch feature decomposition for multi-modality image fusion[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 5906-5916.
|
7 |
LIU J Y, FAN X, HUANG Z B, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 5802-5811.
|
8 |
LIU W Y, REN G F, YU R S, et al. Image-adaptive YOLO for object detection in adverse weather conditions. Artificial Intelligence, 2022, 36 (2): 1792- 1800.
|
9 |
CUI Z T, QI G J, GU L, et al. Multitask AET with orthogonal tangent regularity for dark object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 2553-2562.
|
10 |
江泽涛, 翟丰硕, 钱艺, 等. 结合特征增强和多尺度感受野的低照度目标检测. 计算机研究与发展, 2023, 60 (4): 903- 915.
|
|
JIANG Z T, ZHAI F S, QIAN Y, et al. Low illumination object detection combined with feature enhancement and multi-scale receptive field. Journal of Computer Research and Development, 2023, 60 (4): 903- 915.
|
11 |
HU Y M, HE H, XU C X, et al. Exposure. ACM Transactions on Graphics, 2018, 37 (2): 1- 17.
|
12 |
|
13 |
VARSHANEYA V, BALASUBRAMANIAN S, GERA D. Res-SE-Net: boosting performance of ResNets by enhancing bridge connections[EB/OL]. [2023-08-10]. http://arxiv.org/pdf/1902.06066.
|
14 |
SINGH K, KAPOOR R. Image enhancement using exposure based sub image histogram equalization. Pattern Recognition Letters, 2014, 36, 10- 14.
|
15 |
LEE C, LEE C, KIM C S. Contrast enhancement based on layered difference representation of 2D histograms. IEEE Transactions on Image Processing, 2013, 22 (12): 5372- 5384.
|
16 |
LAND E H, MCCANN J J. Lightness and retinex theory. Josa, 1971, 61 (1): 1- 11.
|
17 |
|
18 |
LI C Y, GUO C L, LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (8): 4225- 4238.
|
19 |
JIANG Y F, GONG X Y, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision. IEEE Transactions on Image Processing, 2021, 30, 2340- 2349.
|
20 |
LI W, LIANG Z X, MA P, et al. Hausdorff GAN: improving GAN generation quality with Hausdorff metric. IEEE Transactions on Cybernetics, 2022, 52 (10): 10407- 10419.
|
21 |
LI W, GU C C, CHEN J L, et al. DW-GAN: toward high-fidelity color-tones of GAN-generated images with dynamic weights. IEEE Transactions on Neural Networks and Learning Systems, 2024, 21, 1- 15.
|
22 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: USA: IEEE Press, 2014: 580-587.
|
23 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
24 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
25 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
26 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 779-788.
|
27 |
|
28 |
|
29 |
王霏, 黄俊, 文洪伟. 基于改进YOLOv3的快速文本检测. 电讯技术, 2022, 62 (1): 130- 137.
|
|
WANG F, HUANG J, WEN H W. Fast text detection based on improved YOLOv3. Telecommunication Engineering, 2022, 62 (1): 130- 137.
|
30 |
EVERINGHAM M, ALI ESLAMI S M, VAN GOOL L, et al. The pascal visual object classes challenge: a retrospective. International Journal of Computer Vision, 2015, 111 (1): 98- 136.
|
31 |
LOH Y P, CHAN C S. Getting to know low-light images with the exclusively dark dataset. Computer Vision and Image Understanding, 2019, 178, 30- 42.
|
32 |
ZHANG Y H, ZHANG J W, GUO X J. Kindling the darkness: a practical low-light image enhancer[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York, USA: ACM Press, 2019: 1632-1640.
|
33 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 740-755.
|
34 |
CUI Z T, LI K, GU L, et al. You only need 90K parameters to adapt light: a light weight transformer for image enhancement and exposure correction[C]//Proceedings of the 33rd British Machine Vision Conference. London, UK: BMVA Press, 2022: 238.
|
35 |
麦锦文, 李浩, 康雁. 基于特征交互结构的弱光目标检测. 计算机工程与应用, 2024, 60 (11): 224- 232.
|
|
MAI J W, LI H, KANG Y. Low-light object detection based on feature interaction structure. Computer Engineering and Applications, 2024, 60 (11): 224- 232.
|
36 |
江泽涛, 肖芸, 张少钦, 等. 基于Dark-YOLO的低照度目标检测方法. 计算机辅助设计与图形学学报, 2023, 35 (3): 441- 451.
|
|
JIANG Z T, XIAO Y, ZHANG S Q, et al. Low-illumination object detection method based on dark-YOLO. Journal of Computer-Aided Design & Computer Graphics, 2023, 35 (3): 441- 451.
|
37 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[M]. Berlin, Germany: Springer, 2020.
|