作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (10): 352-361. doi: 10.19678/j.issn.1000-3428.0068407

• 图形图像处理 • 上一篇    下一篇

基于图像自适应增强的低照度目标检测算法

王非凡1,2,3, 陈希爱2,3,*(), 任卫红4, 管宇2,3,5, 韩志2,3, 唐延东2,3   

  1. 1. 沈阳理工大学自动化与电气工程学院, 辽宁 沈阳 110159
    2. 中国科学院沈阳自动化研究所机器人学国家重点实验室, 辽宁 沈阳 110016
    3. 中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110159
    4. 哈尔滨工业大学机电工程与自动化学院, 广东 深圳 518055
    5. 沈阳理工大学信息科学与工程学院, 辽宁 沈阳 110159
  • 收稿日期:2023-09-17 出版日期:2024-10-15 发布日期:2024-10-23
  • 通讯作者: 陈希爱
  • 基金资助:
    国家自然科学基金(61821005); 中国科学院青年创新促进会项目(2022196); 中国科学院青年创新促进会项目(Y202051); 中国科学院稳定支持基础研究领域青年团队计划(YSBR-041)

Low-illumination Object-Detection Algorithm Based on Image Adaptive Enhancement

WANG Feifan1,2,3, CHEN Xi'ai2,3,*(), REN Weihong4, GUAN Yu2,3,5, HAN Zhi2,3, TANG Yandong2,3   

  1. 1. School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning, China
    2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
    3. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110159, Liaoning, China
    4. School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China
    5. School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning, China
  • Received:2023-09-17 Online:2024-10-15 Published:2024-10-23
  • Contact: CHEN Xi'ai

摘要:

在低光环境下的检测任务中, 由于低亮度、低对比度以及噪声等不利因素影响, 会存在对目标的漏检、错检等现象。针对此问题, 提出基于图像自适应增强的低照度目标检测算法。将传统图像处理方法与深度学习相结合, 设计图像自适应增强网络, 使用多个可调滤波器通过级联的方式进行结合, 对输入的低光图像进行逐步增强, 各滤波器的调节参数由卷积神经网络根据输入图像的全局信息进行预测。将图像自适应增强网络与YOLOv5目标检测网络相结合进行端到端的联合训练, 使图像增强效果更有利于目标检测。由于在低光目标检测过程中易出现漏检现象, 对通道注意力机制SE-Net进行改进, 设计特征增强网络, 并嵌入到YOLOv5网络中Neck部分的末端, 以减少网络特征融合过程中造成潜在目标特征的信息损失。实验结果表明, 所提算法在真实低光数据集ExDark上的检测精度达到了77.3%, 相较于原始YOLOv5目标检测网络提高了2.1个百分点, 检测速度达到79帧/s, 能够实现实时检测的效果。

关键词: 自适应增强, 低照度, 目标检测, 注意力机制, 联合训练

Abstract:

In the case of detection tasks in low-light environments, owing to the influence of unfavorable factors, such as low brightness, low contrast, and noise, missed and wrong detections can occur. Hence, a low-light object detection algorithm based on image adaptive enhancement is proposed. Combining conventional image processing methods with deep learning, an image adaptive enhancement network is designed, where multiple adjustable filters are combined in cascade to gradually enhance the input low-light image, and the adjustment parameters of each filter are predicted using a convolutional neural network based on the global information of the input image. The adaptive enhancement network is combined with the YOLOv5 object detection network for end-to-end joint training such that the image enhancement effect is more conducive to object detection. As the low-light object detection process is susceptible to missed detection, the channel attention mechanism SE-Net is improved, and a feature enhancement network is designed and embedded into the end of the Neck region of the YOLOv5 network to reduce the loss of information about potential target features caused by the process of fusion of network features. Experimental results show that the proposed algorithm achieves a detection accuracy of 77.3% on the low-light dataset ExDark, which is 2.1 percentage points higher than that afforded by the original YOLOv5 object detection network, and its detection speed reaches 79 frame/s, which affords real-time detection.

Key words: adaptive enhancement, low illumination, object detection, attention mechanisms, joint training