[1] TIJANA V, ALEX D, LAURA H, et al.Systematic literature review of hand gestures used in human computer interaction interfaces[J].International Journal of Human-Computer Studies, 2019, 129:74-94. [2] 张聪聪, 何宁, 孙琪翔, 等.基于注意力机制的3D DenseNet人体动作识别方法[J].计算机工程, 2021, 47(11):313-320. ZHANG C C, HE N, SUN Q X, et al.Human motion recognition method based on attention mechanism of 3D DenseNet[J].Computer Engineering, 2021, 47(11):313-320.(in Chinese) [3] KREISS S, BERTONI L, ALAHI A.PifPaf:composite fields for human pose estimation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:11969-11978. [4] FANG H S, XIE S, TAI Y W, et al.RMPE:regional multi-person pose estimation[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2353-2362. [5] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [6] CHU X, OUYANG W, LI H, et al.Structured feature learning for pose estimation[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:4715-4723. [7] OUYANG W, MA C, YUILLE AL, et al.Multi-context attention for human pose estimation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:5669-5678. [8] TOSHEV A, SZEGEDY C.DeepPose:human pose estimation via deep neural networks[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:1653-1660. [9] CARREIRA J, AGRAAL P, FRAGKIADAKI K, et al.Human pose estimation with iterative error feedback[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:4733-4742. [10] NEWELL A, YANG K Y, DENG J.Stacked hourglass networks for human pose estimation[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:483-499. [11] CHENG B, XIAO B, WANG J, et al.HigherHRNet:scale-aware representation learning for bottom-up human pose estimation[EB/OL].[2020-12-01].https://arxiv.org/abs/1908.10357. [12] CHEN Y, WANG Z, PENG Y, et al.Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7103-7112. [13] SUN K, XIAO B, LIU D, et al.Deep high-resolution representation learning for human pose estimation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:5686-5696. [14] WANG Q, WU B, ZHU P, et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle, USA:IEEE Press, 2020:11531-11539. [15] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [16] WANG X, GIRSHICK R, GUPTA A, et al.Non-local neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7794-7803. [17] YANG Z, ZHU L, WU Y, et al.Gated channel transformation for visual recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:11794-11803. [18] YANG Y, RAMANAN D.Articulated pose estimation with flexible mixtures-of-parts[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2011:1385-1392. [19] XIAO B, WU H P, WEI Y C.Simple baselines for human pose estimation and tracking[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:466-481. [20] CAO Z, HIDALGO G, SIMON T, et al.OpenPose:realtime multi-person 2D pose estimation using part affinity fields[EB/OL].[2020-12-01].https://arxiv.org/abs/1812.08008. [21] LI J, WANG C, ZHU H, et al.CrowdPose:efficient crowded scenes pose estimation and a new benchmark[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:10855-10864. |