[1] 段品生, 周建亮.基于姿态特征的建筑工人不安全行为刻画方法[J].安全与环境工程, 2022, 29(3):1-8. DUAN P S, ZHOU J L.Description method of construction workers' unsafe behaviors based on posture characteristics[J].Safety and Environmental Engineering, 2022, 29(3):1-8.(in Chinese) [2] 马淼, 李贻斌, 武宪青, 等.视频中多特征融合人体姿态跟踪[J].中国图象图形学报, 2020, 25(7):1459-1472. MA M, LI Y B, WU X Q, et al.Human pose tracking based on multi-feature fusion in videos[J].Journal of Image and Graphics, 2020, 25(7):1459-1472.(in Chinese) [3] 宋一凡, 张鹏, 刘立波.基于视觉手势识别的人机交互系统[J].计算机科学, 2019, 46(S2):570-574. SONG Y F, ZHANG P, LIU L B.Human-machine interaction system with vision-based gesture recognition[J].Computer Science, 2019, 46(S2):570-574.(in Chinese) [4] 刘勇, 李杰, 张建林, 等.基于深度学习的二维人体姿态估计研究进展[J].计算机工程, 2021, 47(3):1-16. LIU Y, LI J, ZHANG J L, et al.Research progress of two-dimensional human pose estimation based on deep learning[J].Computer Engineering, 2021, 47(3):1-16.(in Chinese) [5] FISCHLER M, ELSCHLAGER R.The representation and matching of pictorial structures[J].IEEE Transactions on Computers, 1973, 22(1):67-92. [6] LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE, 1998, 86(11):2278-2324. [7] TOSHEV A, SZEGEDY C.DeepPose:human pose estimation via deep neural networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:1653-1660. [8] WEI S H, RAMAKRISHNA V, KANADE T, et al.Convolutional pose machines[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:4724-4732. [9] NEWELL A, YANG K Y, DENG J.Stacked hourglass networks for human pose estimation[EB/OL].[2022-06-12].https://link.springer.com/content/pdf/10.1007/978-3-319-46484-8_29.pdf. [10] SUN K, XIAO B, LIU D, et al.Deep high-resolution representation learning for human pose estimation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:5686-5696. [11] LIU S G, LI Y, HUA G G.Human pose estimation in video via structured space learning and halfway temporal evaluation[J].IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(7):2029-2038. [12] CHENG B W, XIAO B, WANG J D, et al.HigherHRNet:scale-aware representation learning for bottom-up human pose estimation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:5385-5394. [13] GENG Z G, SUN K, XIAO B, et al.Bottom-up human pose estimation via disentangled keypoint regression[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:14671-14681. [14] XIAO B, WU H P, WEI Y C.Simple baselines for human pose estimation and tracking[EB/OL].[2022-06-12].https://arxiv.org/pdf/1804.06208.pdf. [15] ZHOU D Q, HOU Q B, CHEN Y P, et al.Rethinking bottleneck structure for efficient mobile network design[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:680-697. [16] HAN K, WANG Y H, TIAN Q, et al.GhostNet:more features from cheap operations[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1577-1586. [17] YU C Q, XIAO B, GAO C X, et al.Lite-HRNet:a lightweight high-resolution network[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:10435-10445. [18] WANG Q L, WU B G, ZHU P F, et al.ECA-net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:11531-11539. [19] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM, 2017, 60(6):84-90. [20] WANG P S, CHENG J.Accelerating convolutional neural networks for mobile applications[C]//Proceedings of the International Multimedia Conference.New York, USA:ACM Press, 2016:1-10. [21] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al.Spatial Transformer networks[EB/OL].[2022-6-12].https://arxiv.org/pdf/1506.02025.pdf. [22] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [23] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [24] SANDLER M, HOWARD A, ZHU M L, et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:4510-4520. [25] LIN T Y, MAIRE M, BELONGIE S, et al.Microsoft COCO:common objects in context[EB/OL].[2022-06-12].https://link.springer.com/content/pdf/10.1007/978-3-319-10602-1_48.pdf. [26] ANDRILUKA M, PISHCHULIN L, GEHLER P, et al.2D human pose estimation:new benchmark and state of the art analysis[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:3686-3693. |