[1] XU Z, XIANG L, XI E, et al. Diagnosis of cirrhosis stage via deep neural network[C]//Proceedings of 2017 IEEE International Conference on Bioinformatics and Biomedicine.Washington D.C., USA:IEEE Press, 2017:745-749. [2] TREA D, LUPSOR M P, NEDEVSCHI S, et al. Discovering the cirrhosis grades from ultrasound images by using textural features and clustering methods[C]//Proceedings of 2013 International Conference on Telecommunications and Signal Processing.Washington D.C., USA:IEEE Press, 2013:633-637. [3] SHIN H C, ROTH H R, GAO M C, et al. Deep convolutional neural networks for computer-aided detection:CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1285-1298. [4] CHEN T, TU S X, WANG H L, et al. Computer-aided diagnosis of gallbladder polyps based on high resolution ultrasonography[J]. Computer Methods and Programs in Biomedicine, 2020, 185(3): 105-118. [5] YANG J F, QIAO P R, LI Y M, et al. Review of machine learning classification problems and algorithms research[J]. Statistics and Decision, 2019, 35(6): 36-40. [6] NANDA A S, SWARNKAR T.Deep learning approach for image classification[C]//Proceedings of the 2nd International Conference on Data Science and Business Analytics.Washington D.C., USA:IEEE Press, 2018:97-101. [7] 常炳国, 李玉琴, 冯志超.基于主成分机器学习算法的慢性肝病的智能预测新方法[J]. 计算机科学, 2017(S2): 75-77, 101. CHANG B G, LI Y Q, FENG Z C.New intelligent prediction method for chronic liver disease based on principal component machine learning algorithm[J]. Computer Science, 2017(S2): 75-77, 101.(in Chinese) [8] 雷一鸣, 赵希梅, 王国栋, 等. 基于一种改进的LBP算法和超限学习机的肝硬化识别[J]. 计算机科学, 2017, 44(10): 45-50. LEI Y M, ZHAO X M, WANG G D, et al. Identification of liver cirrhosis based on an improved LBP algorithm and over-limit learning machine[J]. Computer Science, 2017, 44(10): 45-50.(in Chinese) [9] 韩秀芝.赵希梅, 于可歆.一种基于LBP特征提取和稀疏表示的肝病识别算法[J]. 中国生物医学工程学报, 2017, 36(6): 647-653. HAN X Z, ZHAO X M, YU K X.A liver disease recognition algorithm based on LBP feature extraction and sparse representation[J]. Chinese Journal of Biomedical Engineering, 2017, 36(6): 647-653.(in Chinese) [10] ZHAI S, OU W, YANG Y, et al. Hepatic lesion recognition based on deep visual feature learning[C]//Proceedings of 2019 Photonics and Electromagnetics Research Symposium Fall.Xiamen, China:[s.n.], 2019:1744-1748. [11] 张顺, 龚怡宏, 王进军.深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3): 453-482. ZHANG S, GONG Y H, WANG J J.Development of deep convolutional neural networks and its application in computer vision[J]. Chinese Journal of Computers, 2019, 42(3): 453-482.(in Chinese) [12] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL]. [2020-05-23]. https://www.researchgate.net/publication/319770291_Very_Deep_Convolutional_Networks_for_Large-Scale_Image_Recognition. [13] KRIZHEVSKY A, SUTSKEVER I, HINTON G.ImageNet classification with deep convolutional neural networks[EB/OL]. [2020-05-23]. https://www.researchgate.net/publication/267960550_ImageNet_Classification_with_Deep_Convolutional_Neural_Networks. [14] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [15] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 214-232. [16] ROY A G, NAVAB N, WACHINGER C.Recalibrating fully convolutional networks with spatial and channel "squeeze and excitation" blocks[J]. IEEE Transactions on Medical Imaging, 2019, 38(2): 540-549. [17] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. [18] HARYANTO T, SUHARTANTO H, MURNI A, et al. Strategies to improve performance of convolutional neural network on histopathological images classification[EB/OL]. [2020-05-23]. https://www.researchgate.net/publication/339100825_Strategies_to_Improve_Performance_of_Convolutional_Neural_Network_on_Histopathological_Images_Classification. [19] LU H M, ZHAO D, CHI X B.Early diagnosis of Alzheimer's disease based on deep learning enhanced by AlexNet[J]. Computer Science, 2017(S1): 50-60. [20] 李钢, 李海芳, 尚方信, 等. 基于梯度信息的自适应邻域噪声图像分割模型[J]. 计算机工程, 2018, 44(5): 227-233, 239. LI G, LI H F, SHANG F X, et al. Noise image segmentation model with adaptive neighborhood based on gradient information[J]. Computer Engineering, 2018, 44(5): 227-233, 239. (in Chinese). [21] 张欢, 赵希梅.基于STN和异构卷积滤波器的肝硬化识别[J]. 计算机工程, 2021, 47(5): 301-307, 315. ZHANG H, ZHAO X M.Identification of liver cirrhosis based on STN and heterogeneous convolution filter[J]. Computer Engineering, 2021, 47(5): 301-307, 315.(in Chinese) |