[1] WANG M,DENG W.Deep visual domain adaptation:a survey[J].Neurocomputing,2018,312:135-153. [2] TAN Chuanqi,SUN Fuchun,KONG Tao,et al.A survey on deep transfer learning[C]//Proceedings of International Conference on Artificial Neural Networks.Berlin,Germany:Springer,2018:270-279. [3] ZHUANG Fuzhen,LUO Ping,HE Qing,et al.Research progress of transfer learning[J].Journal of Software,2015,26(1):26-39.(in Chinese)庄福振,罗平,何清,等.迁移学习研究进展[J].软件学报,2015,26(1):26-39. [4] LIU Jianwei,SUN Zhengkang,LUO Xionglin.Research progress of domain adaptation learning[J].Acta Automatica Sinica,2014,41(8):1576-1600.(in Chinese)刘建伟,孙正康,罗雄麟.域自适应学习研究进展[J].自动化学报,2014,41(8):1576-1600. [5] ZHAO S,YUE X,ZHANG S,et al.A review of single-source deep unsupervised visual domain adaptation[EB/OL].[2020-12-20].https://arxiv.org/pdf/2009.00155.pdf. [6] XU Hao,LI Zongyin,GUO Weibin.Multi-level and step-by-step domain adaptation in image classification[J].Journal of Chinese Computer Systems,2019,40(9):1921-1925.(in Chinese)许浩,李宗印,郭卫斌.多层面的分步领域适应图像分类算法[J].小型微型计算机系统,2019,40(9):1921-1925. [7] BI Chaoyang.Research on domain adaptation method based on feature selection[D].Guangzhou:South China University of Technology,2019.(in Chinese)毕朝阳.基于特征选择的领域自适应方法研究[D].广州:华南理工大学,2019. [8] WANG Gege,GUO Tao,YU You,et al.Unsupervised domain adaptation classification model based on generative confrontation network[J].Chinese Journal of Electronics,2019,48(6):1190-1197.(in Chinese)王格格,郭涛,余游,等.基于生成对抗网络的无监督域适应分类模型[J].电子学报,2019,48(6):1190-1197. [9] MAO Xiaofeng.Research on deep vision domain adaptation method based on adversarial learning[D].Harbin:Harbin Engineering University,2019.(in Chinese)毛潇锋.基于对抗学习的深度视觉域适应方法研究[D].哈尔滨:哈尔滨工程大学,2019. [10] CHEN Di.Research on domain adaptation algorithm based on confrontation and regularization method[D].Chendu:University of Electronic Science and Technology of China,2020.(in Chinese)陈迪.基于对抗和正则化方法的域适应算法研究[D].成都:电子科技大学,2020. [11] FAN Cangning,LIU Peng,XIAO Ting,et al.A review of depth domain adaptation:general and complex situations[J].Acta Automatica Sinica,2020,47(3):515-548.(in Chinese)范苍宁,刘鹏,肖婷,等.深度域适应综述:一般情况与复杂情况[J].自动化学报,2020,47(3):515-548. [12] CSURKA G.Domain adaptation for visual applications:a comprehensive survey[EB/OL].[2020-12-20].https://arxiv.org/pdf/1702.05374.pdf. [13] WILSON G,COOK D J.A survey of unsupervised deep domain adaptation[J].ACM Transactions on Intelligent Systems and Technology,2020,11(5):40-46. [14] PAN S J,YANG Q.A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2009,22(10):1345-1359. [15] SAITO K,KIM D,SCLAROFF S,et al.Semi-supervised domain adaptation via minimax entropy[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2019:8050-8058. [16] KIM T,KIM C.Attract,perturb,and explore:learning a feature alignment network for semi-supervised domain adaptation[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2020:591-607. [17] LIU F,LU J,HAN B,et al.Butterfly:a panacea for all difficulties in wildly unsupervised domain adaptation[EB/OL].[2020-12-20].https://arxiv.org/pdf/1905.07720v2.pdf. [18] SHU Y,CAO Z,LONG M,et al.Transferable curriculum for weakly-supervised domain adaptation[C]//Proceedings of AAAI Conference on Artificial Intelligence.New York,USA:ACM Press,2019:4951-4958. [19] MANSOUR Y,MOHRI M,ROSTAMIZADEH A.Domain adaptation with multiple sources[J].Advances in Neural Information Processing Systems,2008,21:1041-1048. [20] XU R,CHEN Z,ZUO W,et al.Deep cocktail network:multi-source unsupervised domain adaptation with category shift[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:3964-3973. [21] PENG X,BAI Q,XIA X,et al.Moment matching for multi-source domain adaptation[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2019:1406-1415. [22] YU H,HU M,CHEN S.Multi-target unsupervised domain adaptation without exactly shared categories[EB/OL].[2020-12-20].https://arxiv.org/pdf/1809.00852.pdf. [23] GHOLAMI B,SAHU P,RUDOVIC O,et al.Unsupervised multi-target domain adaptation:an information theoretic approach[J].IEEE Transactions on Image Processing,2020,29:3993-4002. [24] LI J,LU K,HUANG Z,et al.Heterogeneous domain adaptation through progressive alignment[J].IEEE Transactions on Neural Networks and Learning Systems,2018,30(5):1381-1391. [25] MATSUURA T,HARADA T.Domain generalization using a mixture of multiple latent domains[C]//Proceedings of AAAI Conference on Artificial Intelligence.New York,USA:ACM Press,2020:11749-11756. [26] ZHUANG F,CHENG X,LUO P,et al.Supervised representation learning:transfer learning with deep autoencoders[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,2015:15-28. [27] PAN Y,YAO T,LI Y,et al.Transferrable prototypical networks for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:2239-2247. [28] PAN S J,TSANG I W,KWOK J T,et al.Domain adaptation via transfer component analysis[J].IEEE Transactions on Neural Networks,2010,22(2):199-210. [29] LI J,JING M,LU K,et al.Locality preserving joint transfer for domain adaptation[J].IEEE Transactions on Image Processing,2019,28(12):6103-6115. [30] LONG M,CAO Y,WANG J,et al.Learning transferable features with deep adaptation networks[EB/OL].[2020-12-20].http://ise.thss.tsinghua.edu.cn/~mlong/doc/deep-adaptation-networks-icml15.pdf. [31] LONG M,ZHU H,WANG J,et al.Deep transfer learning with joint adaptation networks[C]//Proceedings of the 34th International Conference on Machine Learning.Washington D.C.,USA:IEEE Press,2017:2208-2217. [32] LI J,LU K,HUANG Z,et al.Transfer independently together:a generalized framework for domain adaptation[J].IEEE Transactions on Cybernetics,2018,49(6):2144-2155. [33] LI J,ZHAO J,LU K.Joint feature selection and structure preservation for domain adaptation[C]//Proceedings of International Joint Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,2016:1697-1703. [34] XU P,GURRAM P,WHIPPS G,et al.Wasserstein distance based domain adaptation for object detection[EB/OL].[2020-12-20].https://arxiv.org/pdf/1909.08675.pdf. [35] SHEN J,QU Y,ZHANG W,et al.Wasserstein distance guided representation learning for domain adaptation[EB/OL].[2020-12-20].https://arxiv.org/pdf/1707.01217v2.pdf. [36] LEE C Y,BATRA T,BAIG M H,et al.Sliced wasserstein discrepancy for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:10285-10295. [37] LI J,CHEN E,DING Z,et al.Maximum density divergence for domain adaptation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,35(3):12-35. [38] ZELLINGER W,GRUBINGER T,LUGHOFER E,et al.Central moment discrepancy for domain-invariant representation learning[EB/OL].[2020-12-20].https://arxiv.org/pdf/1702.08811.pdf. [39] CHEN C,FU Z,CHEN Z,et al.HoMM:higher-order moment matching for unsupervised domain adaptation[J].Order,2020,1(10):20-21. [40] TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial discriminative domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:7167-7176. [41] GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].The Journal of Machine Learning Research,2016,17(1):2096-2030. [42] LONG M,CAO Z,WANG J,et al.Conditional adversarial domain adaptation[EB/OL].[2020-12-20].https://arxiv.org/pdf/1705.10667.pdf. [43] HOFFMAN J,TZENG E,PARK T,et al.Cycada:cycle-consistent adversarial domain adaptation[C]//Proceedings of International Conference on Machine Learning.Washington D.C.,USA:IEEE Press,2018:1989-1998. [44] TZENG E,BURNS K,SAENKO K,et al.SPLAT:semantic pixel-level adaptation transforms for detection[EB/OL].[2020-12-20].https://www.researchgate.net/publication/329387982_SPLAT_Semantic_Pixel-Level_Adaptation_Transforms_for_Detection. [45] LI J,CHEN E,DING Z,et al.Cycle-consistent conditional adversarial transfer networks[C]//Proceedings of the 27th ACM International Conference on Multimedia.New York,USA:ACM Press,2019:747-755. [46] GHIFARY M,KLEIJN W B,ZHANG M,et al.Deep reconstruction-classification networks for unsupervised domain adaptation[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2016:597-613. [47] DAI W,YANG Q,XUE G R,et al.Boosting for transfer learning[C]//Proceedings of the 24th International Conference on Machine learning.Washington D.C.,USA:IEEE Press,2007:193-200. [48] ZHANG J,DING Z,LI W,et al.Importance weighted adversarial nets for partial domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:8156-8164. [49] CAO Z,LONG M,WANG J,et al.Partial transfer learning with selective adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:2724-2732. [50] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [51] NETZER Y,WANG T,COATES A,et al.Reading Digits in natural images with unsupervised feature learning[EB/OL].[2020-12-20].https://www.researchgate.net/publication/266031774_Reading_Digits_in_Natural_Images_with_Unsupervised_Feature_Learning. [52] SAENKO K,KULIS B,FRITZ M,et al.Adapting visual category models to new domains[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2010:213-226. [53] ZHANG L.Transfer adaptation learning:a decade survey[EB/OL].[2020-12-20].https://arxiv.org/pdf/1903.04687.pdf. [54] HOFFMAN J,GUADARRAMA S,TZENG E S,et al.LSDA:large scale detection through adaptation[J].Advances in Neural Information Processing Systems,2014,27:3536-3544. [55] WANG Ling.Research and application of domain adaptation algorithm[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2019.(in Chinese)王翎.域适应算法研究及应用[D].南京:南京航空航天大学,2019. [56] CHEN Y,LI W,SAKARIDIS C,et al.Domain adaptive Faster R-CNN for object detection in the wild[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:3339-3348. [57] HOFFMAN J,WANG D,YU F,et al.FCNs in the wild:pixel-level adversarial and constraint-based adaptation[EB/OL].[2020-12-20].https://arxiv.org/pdf/1612.02649.pdf. [58] INOUE N,FURUTA R,YAMASAKI T,et al.Cross-domain weakly-supervised object detection through progressive domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:5001-5009. [59] ZHANG Y,BARZILAY R,JAAKKOLA T.Aspect-augmented adversarial networks for domain adaptation[J].Transactions of the Association for Computational Linguistics,2017,5:515-528. [60] LIU P,QIU X,HUANG X.Adversarial multi-task learning for text classification[EB/OL].[2020-12-20].https://arxiv.org/pdf/1704.05742.pdf. [61] FU L,NGUYEN T H,MIN B,et al.Domain adaptation for relation extraction with domain adversarial neural network[C]//Proceedings of the 8th International Joint Conference on Natural Language Processing.New York,USA:ACM Press,2017:425-429. [62] YANG Z,HU J,SALAKHUTDINOV R,et al.Semi-supervised QA with generative domain-adaptive nets[EB/OL].[2020-12-20].https://arxiv.org/pdf/1702.02206.pdf. [63] BRITZ D,LE Q,PRYZANT R.Effective domain mixing for neural machine translation[C]//Proceedings of the 2nd Conference on Machine Translation.Washington D.C.,USA:IEEE Press,2017:118-126. [64] PAN W,XIANG E W,YANG Q.Transfer learning in collaborative filtering with uncertain ratings[C]//Proceedings of AAAI Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,2012:662-668. [65] PAN W,XIANG E W,LIU N N,et al.Transfer learning in collaborative filtering for sparsity reduction[C]//Proceedings of AAAI Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,2010:230-235. [66] LI J,LU K,HUANG Z,et al.On both cold-start and long-tail recommendation with social data[J].IEEE Transactions on Knowledge and Data Engineering,2019,33(1):194-208. [67] LI J,LU K,HUANG Z,et al.Two birds one stone:on both cold-start and long-tail recommendation[C]//Proceedings of the 25th ACM International Conference on Multimedia.New York,USA:ACM Press,2017:898-906. [68] ZHUANG F,ZHENG J,CHEN J,et al.Transfer collaborative filtering from multiple sources via consensus regularization[J].Neural Networks,2018,108:287-295. [69] LI J,JING M,ZHU L,et al.Learning modality-invariant latent representations for generalized zero-shot learning[C]//Proceedings of the 28th ACM International Conference on Multimedia.New York,USA:ACM Press,2020:1348-1356. [70] LI J,JING M,LU K,et al.Leveraging the invariant side of generative zero-shot learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:7402-7411. [71] LI J,JING M,LU K,et al.From zero-shot learning to cold-start recommendation[C]//Proceedings of AAAI Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,2019:4189-4196. |