[1] 董亚超, 刘宏哲, 徐成.基于显著性多尺度特征协作融合的行人重识别方法[J].计算机工程, 2021, 47(6):234-244, 252. DONG Y C, LIU H Z, XU C.Person re-identification method based on joint fusion of saliency multi-scale features[J].Computer Engineering, 2021, 47(6):234-244, 252.(in Chinese) [2] 姚蓝, 兰巨龙, 胡涛.基于聚类优化的SDN多域自适应管理方法[J].计算机工程, 2019, 45(6):119-126. YAO L, LAN J L, HU T.Adaptive management method for SDN multi-domain based on clustering optimization[J].Computer Engineering, 2019, 45(6):119-126.(in Chinese) [3] HAN H, ZHOU M C, SHANG X W, et al.KISS for rapid and accurate pedestrian re-identification[J].IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1):394-403. [4] 田智慧, 郑付科, 高需.内容一致性行人重识别算法[J].计算机工程, 2021, 47(3):237-242. TIAN Z H, ZHENG F K, GAO X.Content-consistent pedestrian re-identification algorithm[J].Computer Engineering, 2021, 47(3):237-242.(in Chinese) [5] LIU H, FENG J S, QI M B, et al.End-to-end comparative attention networks for person re-identification[J].IEEE Transactions on Image Processing, 2017, 26(7):3492-3506. [6] CHEN G Y, LU J W, YANG M, et al.Spatial-temporal attention-aware learning for video-based person re-identification[J].IEEE Transactions on Image Processing, 2019, 28(9):4192-4205. [7] HAN H, ZHOU M C, ZHANG Y J.Can virtual samples solve small sample size problem of KISSME in pedestrian re-identification of smart transportation?[J].IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9):3766-3776. [8] DING G D, KHAN S, TANG Z M, et al.Towards better validity:dispersion based clustering for unsupervised person re-identification[EB/OL].[2021-08-01].https://arxiv.org/abs/1906.01308. [9] LIN Y T, DONG X Y, LIANG Y Z, et al.A bottom-up clustering approach to unsupervised person re-identification[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S.1.]:AAAI Press, 2019:549-562. [10] GHIASI G, LIN T Y, LE Q V.DropBlock:a regularization method for convolutional networks[EB/OL].[2021-08-01].https://arxiv.org/abs/1810.12890. [11] ZHENG L, BIE Z, SUN Y F, et al.Mars:video benchmark for large-scale person re-identification[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:868-884. [12] ZHONG Z, ZHENG L, LUO Z M, et al.Invariance matters:exemplar memory for domain adaptive person re-identification[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:598-607. [13] CHENG K Y, TAO F, ZHAN Y Z, et al.Hierarchical attributes learning for pedestrian re-identification via parallel stochastic gradient descent combined with momentum correction and adaptive learning rate[J].Neural Computing and Applications, 2020, 32(10):5695-5712. [14] LIAO X Y, HE L X, YANG Z W, et al.Video-based person re-identification via 3D convolutional networks and non-local attention[C]//Proceedings of ACCVʼ18.Berlin, Germany:Springer, 2018:620-634. [15] KIRAN M, BHUIYAN A, BLAIS-MORIN L A, et al.A flow-guided mutual attention network for video-based person re-identification[EB/OL].[2021-08-01].https://arxiv.org/abs/2008.03788. [16] ZHENG L, BIE Z, SUN Y F, et al.MARS:a video benchmark for large-scale person re-identification[C]//Proceedings of ACCVʼ16.Berlin, Germany:Springer, 2016:868-884. [17] ZHANG Z Z, LAN C L, ZENG W J, et al.Multi-granularity reference-aided attentive feature aggregation for video-based person re-identification[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:10404-10413. [18] XIAO T, LI S, WANG B C, et al.Joint detection and identification feature learning for person search[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:3415-3424. [19] YE M, LI J W, MA A J, et al.Dynamic graph co-matching for unsupervised video-based person re-identification[J].IEEE Transactions on Image Processing, 2019, 28(6):2976-2990. [20] LIU Z M, WANG D, LU H C.Stepwise metric promotion for unsupervised video person re-identification[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2448-2457. [21] YE M, LAN X Y.Robust anchor embedding for unsupervised video person re-identification in the wild[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:170-186. [22] CHEN Y B, ZHU X T, GONG S.Deep association learning for unsupervised video person re-identification[EB/OL].[2021-08-01].https://arxiv.org/pdf/1808.07301.pdf. [23] WU Y, LIN Y T, DONG X Y, et al.Exploit the unknown gradually:one-shot video-based person re-identification by stepwise learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:5177-5186. [24] LIN Y T, DONG X Y, ZHENG L, et al.A bottom-up clustering approach to unsupervised person re-identification[C]//Proceedings of AAAI Conference on Artificial Intelligence.Menlo Park, USA:AAAI Press, 2019:8738-8745. |