[1] 李兰娟, 朱雪灵.新型冠状病毒肺炎疫情防控相关进展[J].浙江医学, 2021, 43(1):1-8. LI L J, ZHU X L.Progress in the prevention and control of the COVID-19 epidemic[J].Zhejiang Medical Journal, 2021, 43(1):1-8.(in Chinese) [2] 刘景景, 张坤淇, 宋明柯.中国等7个国家2020年初的新冠肺炎疫情和应对策略[J/OL].上海预防医学:1-11[2021-10-02].http://kns.cnki.net/kcms/detail/31.1635.R.20210208.1406.003.html. LIU J J, ZHANG K Q, SONG M K.COVID-19 situations and prevention policies adopted in 7 countries including China, early 2020[J/OL].Shanghai Journal of Preventive Medicine:1-11[2021-10-02].http://kns.cnki.net/kcms/detail/31.1635.R.20210208.1406.003.html.(in Chinese) [3] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [4] DAI J, LI Y, HE K, et al.R-FCN:object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2016:379-387. [5] CAI Z W, VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:6154-6162. [6] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:779-788. [7] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot multibox detector[C]//Proceedings of 2016 European Conference on Computer Vision.Berlin, Germany:Springer, 2016:21-37. [8] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[EB/OL].[2021-10-02].https://arxiv.org/pdf/1708.02002.pdf. [9] REDMON J, FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2021-10-02].https://arxiv.org/abs/1804.02767. [10] ZHU Z, LIANG D, ZHANG S H, et al.Traffic-sign detection and classification in the wild[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:2110-2118. [11] BRAZIL G, LIU X M.Pedestrian detection with autoregressive network phases[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:7224-7233. [12] DENG J K, GUO J, XUE N N, et al.ArcFace:additive angular margin loss for deep face recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:4685-4694. [13] 王艺皓, 丁洪伟, 李波, 等.复杂场景下基于改进YOLOv3的口罩佩戴检测算法[J].计算机工程, 2020, 46(11):12-22. WANG Y H, DING H W, LI B, et al.Mask wearing detection algorithm based on improved YOLOv3 in complex scenes[J].Computer Engineering, 2020, 46(11):12-22.(in Chinese) [14] 曹城硕, 袁杰.基于YOLO-Mask算法的口罩佩戴检测方法[J].激光与光电子学进展, 2021, 58(8):211-218. CAO C S, YUAN J.Mask-wearing detection method based on YOLO-Mask[J].Laser &Optoelectronics Progress, 2021, 58(8):211-218.(in Chinese) [15] 张修宝, 林子原, 田万鑫, 等.全天候自然场景下的人脸佩戴口罩识别技术[J].中国科学(信息科学), 2020, 50(7):1110-1120. ZHANG X B, LIN Z Y, TIAN W X, et al.Mask-wearing recognition in the wild[J].Scientia Sinica (Informationis), 2020, 50(7):1110-1120.(in Chinese) [16] 彭成, 张乔虹, 唐朝晖, 等.基于YOLOv5增强模型的口罩佩戴检测方法研究[J].计算机工程, 2022, 48(4):39-49. PENG C, ZHANG Q H, TANG Z H, et al.Research on mask wearing detection method based on YOLOv5 enhancement model[J].Computer Engineering, 2022, 48(4):39-49.(in Chinese) [17] WANG Z, WANG G, HUANG B, et al.Masked face recognition dataset and application[EB/OL].[2021-10-02].https://arxiv.org/abs/2003.09093. [18] 贾会学, 李六亿.新型冠状病毒感染肺炎流行期间标准预防执行要点[J].中华医院感染学杂志, 2020, 30(11):1615-1619. JIA H X, LI L Y.Key points for the implementation of standard prevention during COVID-19 epidemic[J].Chinese Journal of Nosocomiology, 2020, 30(11):1615-1619.(in Chinese) [19] 林云.基于OpenCV的车牌识别系统设计与实现[J].物联网技术, 2020, 10(6):22-25. LIN Y.Design and implementation of license plate recognition system based on OpenCV[J].Internet of Things Technology, 2020, 10(6):22-25.(in Chinese) [20] 马钰锡, 谭励, 董旭, 等.面向VTM的交互式活体检测算法[J].计算机工程, 2019, 45(3):256-261. MA Y X, TAN L, DONG X, et al.Interactive liveness detection algorithm for VTM[J].Computer Engineering, 2019, 45(3):256-261.(in Chinese) [21] 晁越, 李中健, 黄士飞.OpenCV图像处理编程研究[J].电子设计工程, 2013, 21(10):175-177. CHAO Y, LI Z J, HUANG S F.Programming and image processing based on the realization OpenCV[J].Electronic Design Engineering, 2013, 21(10):175-177.(in Chinese) [22] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[C]//Proceedings of 2018 European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19. [23] EVERINGHAM M, GOOL L, WILLIAMS C K I, et al.The pascal Visual Object Classes(VOC) challenge[J].International Journal of Computer Vision, 2010, 88(2):303-338. [24] 石雁, 李朝锋.基于协同相似计算的查询推荐[J].计算机工程, 2016, 42(8):188-193. SHI Y, LI C F.Query recommendation based on collaborative similarity calculation[J].Computer Engineering,, 2016, 42(8):188-193.(in Chinese) [25] CHEN K, LOY C C, GONG S G, et al.Feature mining for localised crowd counting[C]//Proceedings of 2012 British Machine Vision Conference.[S.l.]:British Machine Vision Association, 2012:1-11. [26] CHAN A B, LIANG Z S J, VASCONCELOS N.Privacy preserving crowd monitoring:counting people without people models or tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2008:1-7. [27] ZHANG Y Y, ZHOU D S, CHEN S Q, et al.Single-image crowd counting via multi-column convolutional neural network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:589-597. [28] GE S M, LI J, YE Q T, et al.Detecting masked faces in the wild with LLE-CNNs[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:426-434. [29] DENG J, DONG W, SOCHER R, et al.ImageNet:a large-scale hierarchical image database[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2009:248-255. [30] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. |