作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (12): 243-251, 261. doi: 10.19678/j.issn.1000-3428.0066803

• 开发研究与工程应用 • 上一篇    下一篇

一种面向智联网的高效联邦学习算法

叶进1, 韦涛1, 胡亮青1, 罗森1, 李晓欢2   

  1. 1. 广西大学 计算机与电子信息学院, 南宁 530003
    2. 广西综合交通大数据研究院, 南宁 530201
  • 收稿日期:2023-01-20 出版日期:2023-12-15 发布日期:2023-12-14
  • 作者简介:

    叶进(1970—),女,教授、博士,主研方向为网络协议设计、数据中心网络

    韦涛,硕士研究生

    胡亮青,实验师、硕士

    罗森,硕士研究生

    李晓欢,教授、博士

  • 基金资助:
    国家自然科学基金区域创新发展联合基金(U22A2021)

An Efficient Federated Learning Algorithm for Artificial Intelligence of Things

Jin YE1, Tao WEI1, Liangqing HU1, Sen LUO1, Xiaohuan LI2   

  1. 1. School of Computer, Electronics and Information, Guangxi University, Nanning 530003, China
    2. Guangxi Research Institute of Integrated Transportation Big Data, Nanning 530201, China
  • Received:2023-01-20 Online:2023-12-15 Published:2023-12-14

摘要:

在智联网(AIoT)中引入联邦学习(FL)可以加强数据的隐私保护,然而分布式AIoT设备间的数据通常是非独立同分布的,标准的FL模型训练算法会使模型训练时出现客户机漂移的现象,导致收敛缓慢和不稳定。针对此问题,提出基于全局动量的联邦学习算法FedCNM。FedCNM将在AIoT服务器聚合的全局梯度信息发送至AIoT设备,让AIoT设备可以根据全局梯度信息来初始化本地模型,并标准化客户机模型的参数更新,以全局动量的方式平滑客户机模型的更新来缓解客户机漂移问题,加快模型的训练。在CIFAR-10和CIFAR-100数据集上模拟大规模设备、部分参与和不同数据分布场景进行仿真实验,结果表明,较对比方法,FedCNM在各种任务上训练的模型可以提高1.46%~11.12%的测试精度,且完成各种学习任务所需要的通信量最少。在CIFAR-10数据集上对比SGD+M、NAG、Adam和AMSGrad这4个本地优化器对算法的影响,实验结果表明,当本地使用基于动量的优化器SGD+M和NAG时,分别提高了10.53%和10.44%的测试精度。

关键词: 联邦学习, 动量, 智联网, 非独立同分布, 深度学习

Abstract:

Introducing Federated Learning(FL) in Artificial Intelligence of Things(AIoT) can enhance data privacy protection. However, data between distributed AIoT devices is usually non-Independent Identically Distribution(non-IID), and standard FL model training algorithms can cause client drift during model training, leading to slow convergence and instability. To address this issue, a FL algorithm FedCNM based on global momentum is proposed. FedCNM sends the global gradient information aggregated on the AIoT server to the AIoT device, allowing the AIoT device to initialize the local model based on the global gradient information and standardize the parameter updates of the client model, smoothing the updates of the client model in a global momentum manner to alleviate the problem of client drift and accelerate model training. Simulation experiments on large-scale devices, partial participation, and different data distributions were conducted on the CIFAR-10 and CIFAR-100 datasets. The results showed that the models trained by FedCNM on various tasks can improve testing accuracy by 1.46%-1.12%, and the communication required to complete various learning tasks is less than that of the comparison method. Comparing the impact of four local optimizers, SGD+M, NAG, Adam, and AMSGrad, on the CIFAR-10 dataset, the experimental results showed that when using momentum based optimizers SGD+M and NAG locally, the testing accuracy was improved by 10.53% and 10.44%, respectively.

Key words: Federated Learning(FL), momentum, Artificial Intelligence of Things(AIoT), non-Independent Identically Distribution(non-IID), deep learning