1 |
王静石. 缺氧缺血性脑病的影像组学特征评估脑可塑性及预后的相关性研究[D]. 沈阳: 中国医科大学, 2023.
|
|
WANG J S. Study on the correlation between brain plasticity and prognosis in hypoxic-ischemic brain damage assessed by radiomics[D]. Shenyang: China Medical University, 2023. (in Chinese)
|
2 |
向雪莲, 朱芳梅, 王宇军. Dyke-Davidoff-Masson综合征的影像诊断价值分析. 临床放射学杂志, 2020, 39 (12): 2379- 2382.
|
|
XIANG X L , ZHU F M , WANG Y J . The CT and MR imaging diagnostic value of Dyke-Davidoff-Masson syndrome. Journal of Clinical Radiology, 2020, 39 (12): 2379- 2382.
|
3 |
HU S , KANG H , BAEK Y , et al. Real-time imaging of brain tumor for image-guided surgery. Advanced Healthcare Materials, 2018, 7 (16): e1800066.
|
4 |
FISCHL B , SALAT D H , BUSA E , et al. Whole brain segmentation automated labeling of neuroanatomical structures in the human brain. Neuron, 2002, 33 (3): 341- 355.
|
5 |
LEDIG C , HECKEMANN R A , HAMMERS A , et al. Robust whole-brain segmentation: application to traumatic brain injury. Medical Image Analysis, 2015, 21 (1): 40- 58.
|
6 |
LI Y S , CUI J , SHENG Y L , et al. Whole brain segmentation with full volume neural network. Computerized Medical Imaging and Graphics, 2021, 93, 101991.
|
7 |
GUHA ROY A , CONJETI S , NAVAB N , et al. QuickNAT: a fully convolutional network for quick and accurate segmentation of neuroanatomy. NeuroImage, 2019, 186, 713- 727.
|
8 |
ZHANG X , HE X , GUO J , et al. PTNet3D: a 3D high-resolution longitudinal infant brain MRI synthesizer based on transformers. IEEE Transactions on Medical Imaging, 2022, 41 (10): 2925- 2940.
|
9 |
WYAWAHARE M V , PATIL P M , ABHYANKAR H K . Image registration techniques: an overview. IEEE Transactions on Signal Processing, 2009, 2 (3): 11- 28.
|
10 |
WANG H , SUH J W , DAS S R , et al. Multi-atlas segmentation with joint label fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (3): 611- 623.
|
11 |
FISCHL B . FreeSurfer. NeuroImage, 2012, 62 (2): 774- 781.
|
12 |
SULTANA F , SUFIAN A , DUTTA P . Evolution of image segmentation using deep convolutional neural network: a survey. Knowledge-Based Systems, 2020, 201, 106062.
|
13 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE Press, 2015: 3431-3440.
|
14 |
FALK T , MAI D , BENSCH R , et al. U-Net: deep learning for cell counting, detection, and morphometry. Nature Methods, 2019, 16 (1): 67- 70.
|
15 |
林志洁, 郑秋岚, 梁涌, 等. 基于内卷U-Net的医学图像分割模型. 计算机工程, 2022, 48 (8): 180- 186.
doi: 10.19678/j.issn.1000-3428.0062023
|
|
LIN Z J , ZHENG Q L , LIANG Y , et al. Medical image segmentation model based on involution U-Net. Computer Engineering, 2022, 48 (8): 180- 186.
doi: 10.19678/j.issn.1000-3428.0062023
|
16 |
ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2016: 424-432.
|
17 |
田辉, 段鑫龙, 郝琪雅, 等. 融合多尺度特征融合和改进ViT的细胞计数方法. 计算机工程, 2023, 49 (10): 162- 170.
doi: 10.19678/j.issn.1000-3428.0070281
|
|
TIAN H , DUAN X L , HAO Q Y , et al. A cell counting method combining multi-scale feature fusion and improved ViT. Computer Engineering, 2023, 49 (10): 162- 170.
doi: 10.19678/j.issn.1000-3428.0070281
|
18 |
LI Z , ZHANG C X , ZHANG Y Q , et al. CAN: Context-assisted full attention network for brain tissue segmentation. Medical Image Analysis, 2023, 85, 102710.
|
19 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 4700-4708.
|
20 |
|
21 |
CHEN Z, ZHANG Y L, GU J J, et al. Dual aggregation transformer for image super-resolution[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2023: 12312-12321.
|
22 |
XUE T , MA P S . TC-Net: transformer combined with CNN for image denoising. Applied Intelligence, 2023, 53 (6): 6753- 6762.
|
23 |
|
24 |
HATAMIZADEH A, TANG Y C, NATH V, et al. UNETR: transformers for 3D medical image segmentation[C]//Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2022: 574-584.
|
25 |
HATAMIZADEH A , NATH V , TANG Y C , et al. Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. Berlin, Germany: Springer, 2022.
|
26 |
YU X , YANG Q , ZHOU Y C , et al. UNesT: local spatial representation learning with hierarchical transformer for efficient medical segmentation. Medical Image Analysis, 2023, 90, 102939.
|
27 |
YUE G H , ZHUO G B , ZHOU T W , et al. Adaptive cross-feature fusion network with inconsistency guidance for multi-modal brain tumor segmentation. IEEE Journal of Biomedical and Health Informatics, 2023, 45, 1- 11.
|
28 |
LI W , HUANG W , ZHENG Y . CorrDiff: corrective diffusion model for accurate MRI brain tumor segmentation. IEEE Journal of Biomedical and Health Informatics, 2024, 28 (3): 1587- 1598.
|
29 |
BORGES P , SHAW R , VARSAVSKY T , et al. Acquisition-invariant brain MRI segmentation with informative uncertainties. Medical Image Analysis, 2024, 92, 103058.
|
30 |
XIAO Y , YUAN Q , JIANG K , et al. TTST: a top-k token selective transformer for remote sensing image super-resolution. IEEE Trans Image Process, 2024, 33, 738- 752.
|
31 |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022.
|
32 |
DONG X Y, BAO J M, CHEN D D, et al. CSWin transformer: a general vision transformer backbone with cross-shaped windows[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 12124-12134.
|
33 |
LAMONTAGNE P, BENZINGER T, MORRIS J, et al. OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease[EB/OL]. [2024-01-03]. https://arxiv.org/abs/2019.19014.
|
34 |
MAREK K , JENNINGS D , LASCH S , et al. The parkinson progression marker initiative. Progress in Neurobiology, 2011, 95 (4): 629- 635.
|
35 |
HOSSEINI F, EBRAHIMPOURKOMLEH H, KHODAMHAZRATI M. Quantitative evaluation of skull stripping techniques on magnetic resonance images[C]//Proceedings of World Congress on Electrical Engineering and Computer Systems and Science. Washington D. C., USA: IEEE Press, 2012: 473-482.
|
36 |
MARCUS D S , WANG T H , PARKER J , et al. Open access series of imaging studies: cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 2007, 19 (9): 1498- 1507.
|
37 |
HERING A , HANSEN L , MOK T C W , et al. Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning. IEEE Transactions on Medical Imaging, 2023, 42 (3): 697- 712.
|
38 |
AVANTS B , TUSTISON N J , SONG G . Advanced normalization tools. The Insight Journal, 2009, 365, 1- 35.
|
39 |
|
40 |
WANG W X , CHEN W , QIU Q B , et al. CrossFormer++: a versatile vision transformer hinging on cross-scale attention. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 46 (5): 3123- 3136.
|