1 |
|
|
|
2 |
夏青青, 安鹏宇, 贺跃光, 等. 基于灰色理论的矿区地表沉降预测. 交通科学与工程, 2010, 26 (3): 52- 55.
|
|
XIA Q Q , AN P Y , HE Y G , et al. Subsidence prediction of mining area based on the grey theory. Journal of Transport Science and Engineering, 2010, 26 (3): 52- 55.
|
3 |
杨泰, 余学祥. 等维新信息模型在矿区地表沉降预测中的应用. 煤炭技术, 2011, 30 (10): 135-136, 139.
|
|
YANG T , YU X X . Application of equal-dimension and new-information model in terrain subsidence prediction in mining area. Coal Technology, 2011, 30 (10): 135-136, 139.
|
4 |
任迎华, 张书毕, 黄磊, 等. 基于自适应AR模型的矿区地表沉降预测. 矿山测量, 2009, (4): 33-35, 37.
doi: 10.3969/j.issn.1001-358X.2009.04.012
|
|
REN Y H , ZHANG S B , HUANG L , et al. The mining area surface subsidence forecast based on the adaptive AR model. Mine Surveying, 2009, (4): 33-35, 37.
doi: 10.3969/j.issn.1001-358X.2009.04.012
|
5 |
查天宇, 成枢, 吕磊. 基于灰色BP神经网络组合模型的深基坑沉降预测. 测绘与空间地理信息, 2019, 42 (9): 212- 215.
|
|
ZHA T Y , CHENG S , LÜ L . Prediction of deep foundation pit settlement based oncombined model of grey BP neural network. Geomatics [WT《Times New Roman》] & Spatial Information Technology, 2019, 42 (9): 212- 215.
|
6 |
朱诚, 王昭敏, 隆锋, 等. 基于ABC-BP神经网络的地铁盾构地表沉降预测. 河海大学学报(自然科学版), 2023, 51 (4): 72- 80.
|
|
ZHU C , WANG Z M , LONG F , et al. Prediction of ground settlement of subway shield based on ABC-BP neural network. Journal of Hohai University (Natural Sciences), 2023, 51 (4): 72- 80.
|
7 |
肖海平, 王顺辉, 陈兰兰, 等. 一种融合GA和LSTM的边坡变形预测优化网络模型及其应用. 大地测量与地球动力学, 2024, 44 (5): 491- 496.
|
|
XlAO H P , WANG S H , CHEN L L , et al. An optimization network model for slope deformation prediction based on GA and LSTM fusion and its application. Journal of Geodesy and Geodynamics, 2024, 44 (5): 491- 496.
|
8 |
周文韬, 张文君, 杨元继, 等. 矿区地表沉降监测的一种组合模型预测方法. 大地测量与地球动力学, 2021, 41 (3): 308- 312.
|
|
ZHOU W T , ZHANG W J , YANG Y J , et al. Acombined model prediction method for surface subsidence monitoring in mining areas. Journal of Geodesy and Geodynamics, 2021, 41 (3): 308- 312.
|
9 |
叶万军, 成炜康, 陈笑楠, 等. 砂卵石地层大直径盾构工程地表沉降深度学习预测. 中国安全生产科学技术, 2023, 19 (8): 124- 129.
|
|
YE W J , CHENG W K , CHEN X N , et al. Deep learning and prediction on surface subsidence of large-diameter shield project in sandy cobble stratum. Journal of Safety Science and Technology, 2023, 19 (8): 124- 129.
|
10 |
李星, 高建良, 张学博, 等. BP神经网络预测地表沉降参数的算法与拓扑结构寻优. 中国安全生产科学技术, 2023, 19 (6): 90- 97.
|
|
Ll X , GAO J L , ZHANG X B , et al. Optimization of algorithm and topological structure for prediction of surface subsidence parameters based on BP neural network. Journal of Safety Science and Technology, 2023, 19 (6): 90- 97.
|
11 |
梁乃兴, 闫杰, 杨文臣, 等. 基于ARIMA-LSTM的高速公路交通安全组合预测模型研究. 重庆交通大学学报(自然科学版), 2023, 42 (4): 131- 138.
|
|
LIANG N X , YAN J , YANG W C , et al. Acombined prediction model for highway traffic safety based on ARIMA-LSTM. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42 (4): 131- 138.
|
12 |
关涛, 陈普瑞, 于浩. 高拱坝施工仿真参数ARIMA-LSTM时序概率预测方法. 水力发电学报, 2023, 42 (11): 146- 156.
|
|
GUAN T , CHEN P R , YU H . ARIMA-LSTM time series probability prediction method for simulation parameters of high arch dam construction. Journal of Hydroelectric Engineering, 2023, 42 (11): 146- 156.
|
13 |
张钰凡, 李玉忍, 马睿, 等. 基于ARIMA-LSTM深度学习混合模型的PEMFC老化预测方法. 西北工业大学学报, 2023, 41 (3): 464- 470.
|
|
ZHANG Y F , LI Y R , MA R , et al. Degradation prediction method of PEMFC based on deep learning hybrid model integrating ARIMA and LSTM. Journal of Northwestern Polytechnical University, 2023, 41 (3): 464- 470.
|
14 |
刘增波, 徐良骥, 张坤, 等. 融合SBAS-InSAR与CS-SVM的矿区地表残余沉降预测模型. 金属矿山, 2024, (8): 133- 139.
|
|
LIU Z B , XU L J , ZHANG K , et al. Surface residual subsidence prediction model for mining area based on the fusion of SBAS-InSAR and CS-SVM. Metal Mine, 2024, (8): 133- 139.
|
15 |
陈媛媛, 赵秉琨, 王慧, 等. 基于LSTM模型的时序InSAR地表形变预测. 人民长江, 2024, 55 (3): 146- 152.
|
|
CHEN Y Y , ZHAO B K , WANG H , et al. Time-series InSAR ground deformation prediction based on LSTM model. Yangtze River, 2024, 55 (3): 146- 152.
|
16 |
卫达宁, 王世杰. 基于时序InSAR技术的西安地铁沿线沉降监测及预测分析. 地球物理学进展, 2024, 39 (2): 498- 509.
|
|
WEI D N , WANG S J . Settlement monitoring and prediction analysis along Xi'an subway based on sequential InSAR technology. Progress in Geophysics, 2024, 39 (2): 498- 509.
|
17 |
方诗圣, 苏一恒, 林彤彤, 等. 基于机器学习的盾构掘进地表沉降回归预测模型. 合肥工业大学学报(自然科学版), 2023, 46 (9): 1224- 1229.
|
|
FANG S S , SU Y H , LIN T T , et al. Regression prediction model of shield tunneling-induced ground settlement based on machine learning algorithms. Journal of Hefei University of Technology (Natural Science), 2023, 46 (9): 1224- 1229.
|
18 |
|
|
HE Y, YAO S, CHEN Y, et al. Spatio-temporal prediction of time-series InSAR Land subsidence based on ConvLSTM neural network[J/OL]. Geomatics and Information Science of Wuhan University: 1-21[2023-12-02]. https://doi.org/10.13203/j.whugis20220657. (in Chinese)
|
19 |
魏海斌, 魏东升, 蒋博宇, 等. 基于IPSO-SVR的盾构下穿既有道路沉降预测分析. 华南理工大学学报(自然科学版), 2023, 51 (6): 62- 71.
|
|
WEI H B , WEI D S , JIANG B Y , et al. Prediction analysis of settlement of existing road under shield tunneling based on IPSO-SVR. Journal of South China University of Technology (Natural Science Edition), 2023, 51 (6): 62- 71.
|
20 |
原喜屯, 温永啸, 陈芯宇. 多模型融合的矿区地表沉降预测方法及适用性. 大地测量与地球动力学, 2023, 43 (3): 232- 238.
|
|
YUAN X T , WEN Y X , CHEN X Y . Prediction method and applicability of mining area surface subsidence based on multi-model fusion. Journal of Geodesy and Geodynamics, 2023, 43 (3): 232- 238.
|
21 |
GONG C J , XIE C R , LIN Z Q , et al. Ground deformation prediction induced by shield tunnelling considering existing multi-story buildings. Journal of Central South University, 2023, 30 (4): 1373- 1387.
doi: 10.1007/s11771-023-5307-7
|
22 |
龙宇, 许浩然, 余华云, 等. 基于ARIMA-LSTM-XGBoost组合模型的铁路货运量预测. 科学技术与工程, 2023, 23 (25): 10879- 10886.
|
|
LONG Y , XU H R , YU H Y , et al. Prediction of railway freight volume based on ARIMA-LSTM-XGBoostcombination model. Science Technology and Engineering, 2023, 23 (25): 10879- 10886.
|
23 |
刘辉, 陈斯涤, 朱晓峻, 等. 基于D-InSAR技术的煤矿工业广场动态沉降特征研究. 煤田地质与勘探, 2023, 51 (5): 99- 112.
|
|
LIU H , CHEN S D , ZHU X J , et al. Study on dynamic subsidence characteristics of coal mine industrial square based on D-InSAR technology. Coal Geology [WT《Times New Roman》] & Exploration, 2023, 51 (5): 99- 112.
|
24 |
韩春鹏, 杜超, 史梁, 等. 老采空区地表沉降预测合理监测模式分析. 工程勘察, 2024, 52 (2): 48- 53.
|
|
HAN C P , DU C , SHI L , et al. Analysis on the monitoring model of surface subsidence prediction in old mined-out area. Geotechnical Investigation [WT《Times New Roman》] & Surveying, 2024, 52 (2): 48- 53.
|
25 |
杨建, 常学军, 姚帅, 等. 基于WT-CNN-BiLSTM模型的日前光伏功率预测. 南方电网技术, 2024, 18 (8): 61-69, 79.
|
|
YANG J , CHANG X J , YAO S , et al. Day-ahead photovoltaic power forecasting based on WT-CNN-BiLSTM model. Southern Power System Technology, 2024, 18 (8): 61-69, 79.
|
26 |
王昊, 周建涛, 郝昕毓, 等. 基于特征再抽象(FRA)的多元时序预测方法. 计算机科学, 2023, 50 (S2): 662- 669.
|
|
WANG H , ZHOU J T , HAO X Y , et al. Multivariate time series forecasting method based on FRA. Computer Science, 2023, 50 (S2): 662- 669.
|
27 |
李丹, 孙光帆, 缪书唯, 等. 基于多维时序信息融合的短期电力负荷预测方法. 中国电机工程学报, 2023, 43 (S1): 94- 106.
|
|
LI D , SUN G F , MLAO S W , et al. A short-term power load forecasting method based on multidimensional temporal information fusion. Proceedings of the CSEE, 2023, 43 (S1): 94- 10.
|