[1] Ministry of Health of the People's Republic of China.Basic standards for electronic medical records (trial)[J].China Health Quality Management,2010(4):13-14.(in Chinese)中华人民共和国卫生部.电子病历基本规范(试行)[J].中国卫生质量管理,2010(4):13-14. [2] SHEN Wei.The change of medical behavior caused by the electronic medical record[J].Journal of Medical Informatics,2007,28(4):346-347.(in Chinese)沈伟.电子病历给医疗行为带来的变革[J].医学信息学杂志,2007,28(4):346-347. [3] ZHANG Xiumei,XU Jianwu,CHENG Yuhua,et al.Knowledge-based building of a clinical decision support system[J].Chinese Journal of Hospital Administration,2014,30(6):472-475.(in Chinese)张秀梅,徐建武,程煜华,等.基于知识库的临床决策支持系统构建[J].中华医院管理杂志,2014,30(6):472-475. [4] GRISHMAN R,SUNDHEIM B.Message understanding conference-6:a brief history[C]//Proceedings of the 16th Conference on Computational Linguistics.New York,USA:ACM Press,1996:466-471. [5] UZUNER Ö,SOUTH B,SHEN S Y,et al.2010 i2b2/VA challenge on concepts,assertions,and relations in clinical text[J].Journal of the American Medical Informatics Association,2011,18(5):552-556. [6] SARAWAGI S.Information extraction[J].Foundations and Trends in Databases,2008,1(3):261-377. [7] ZHOU Jing.Chinese entity relation extraction based on conditional random fields model[J].Computer Engineering,2010,36(24):192-194.(in Chinese)周晶.基于条件随机域模型的中文实体关系抽取[J].计算机工程,2010,36(24):192-194. [8] CHEN H H,DING Y W,TSAI S C,et al.Description of the NTU system used for MET-2[C]//Proceedings of the 7th Message Understanding Conference.San Diego,USA:Internet Society,1998:1-9. [9] ZHANG Zhu.Weakly-supervised relation classification for information extraction[C]//Proceedings of the 13th ACM Conference on Information and Knowledge Management.New York,USA:ACM Press,2004:581-588. [10] MINTZ M,BILLS S,SNOW R,et al.Distant supervision for relation extraction without labeled data[C]//Proceedings of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP.New York,USA:ACM Press,2009:1003-1011. [11] RICHARD S,BRODY H,CHRISTOPHER D,et al.Semantic compositionality through recursive matrix-vector space[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning.New York,USA:ACM Press,2012:1201-1211. [12] ZENG Daojian,LIU Kang,LAI Siwei,et al.Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics.Dubin,Ireland:[s.n.],2014:2335-2344. [13] SUN Ziyang,GU Junzhong,YANG Jing.Chinese entity relation extraction method based on deep learning[J].Computer Engineering,2018,44(9):164-170.(in Chinese)孙紫阳,顾君忠,杨静.基于深度学习的中文实体关系抽取方法[J].计算机工程,2018,44(9):164-170. [14] RINK B,HARABAGIU S,ROBERTS K.Automatic extraction of relations between medical concepts in clinical texts[J].Journal of the American Medical Informatics Association,2011,18(5):594-600. [15] FANG Y C,HUANG H C,CHEN H H,et al.TCMGeneDIT:a database for associated traditional Chinese medicine,gene and disease information using text mining[J].BMC Complementary and Alternative Medicine,2008,8(1):58-58. [16] WANG X Y,CHUSED A,ELHADAD N,et al.Automated knowledge acquisition from clinical narrative reports[C]//Proceedings of the American Medical Informatics Association.New York,USA:ACM Press,2008:783-787. [17] HUANG Degen,JIANG Zhenchao,ZOU Li,et al.Drug-drug interaction extraction from biomedical literature using support vector machine and long short term memory networks[J].Information Sciences,2017(415/416):100-109. [18] RINK B,HARABAGIU S.UTD:classifying semantic relations by combining lexical and semantic resources[C]//Proceedings of the 5th International Workshop on Semantic Evaluation.New York,USA:ACM Press,2010:256-259. [19] SAHU S K,ANAND A,ORUGANTY K,et al.Relation extraction from clinical texts using domain invariant convolutional neural network[C]//Proceedings of the 15th Workshop on Biomedical Natural Language.Berlin,Germany:Springer,2016:206-215. [20] LI Lingfeng,NIE Yuanping,HAN Weihong,et al.A multi-attention-based bidirectional long short-term memory network for relation extraction[C]//Proceedings of the International Conference on Neural Information.Berlin,Germany:Springer,2017:216-227. |