1 |
刘泽. 自动驾驶汽车多源异构传感器环境感知方法研究[D]. 镇江: 江苏大学, 2022.
|
|
LIU Z. Research on environment perception method of multi-source heterogeneous sensors for autonomous vehicle[D]. Zhenjiang: Jiangsu University, 2022. (in Chinese)
|
2 |
张珊. 基于多源数据融合的三维目标检测研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
ZHANG S. Research on 3D target detection based on multi-source data fusion[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
|
3 |
TAN H J, OU D X, ZHANG L, et al. Infrared sensation-based salient targets enhancement methods in low-visibility scenes. Sensors, 2022, 22 (15): 5835.
doi: 10.3390/s22155835
|
4 |
|
5 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
6 |
DAYAL A, AISHWARYA M, ABHILASH S, et al. Adversarial unsupervised domain adaptation for hand gesture recognition using thermal images. IEEE Sensors Journal, 2023, 23 (4): 3493- 3504.
doi: 10.1109/JSEN.2023.3235379
|
7 |
AKKAYA I B, ALTINEL F, HALICI U. Self-training guided adversarial domain adaptation for thermal imagery[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 4317-4326.
|
8 |
KIM Y H, SHIN U, PARK J, et al. MS-UDA: multi-spectral unsupervised domain adaptation for thermal image semantic segmentation. IEEE Robotics and Automation Letters, 2021, 6 (4): 6497- 6504.
doi: 10.1109/LRA.2021.3093652
|
9 |
USTUN B, KAYA A K, CAKIR A, et al. Spectral transfer guided active domain adaptation for thermal imagery[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 449.
|
10 |
|
11 |
MARNISSI M A, FRADI H, SAHBANI A, et al. Unsupervised thermal-to-visible domain adaptation method for pedestrian detection. Pattern Recognition Letters, 2022, 153 (C): 222- 231.
|
12 |
|
13 |
VS V, POSTER D, YOU S Y, et al. Meta-UDA: unsupervised domain adaptive thermal object detection using meta-learning[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2022: 3697.
|
14 |
KIEU M, BAGDANOV A D, BERTINI M. Bottom-up and layerwise domain adaptation for pedestrian detection in thermal images[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 17(1): 32.
|
15 |
KIEU M, BAGDANOV A D, BERTINI M, et al. Domain adaptation for privacy-preserving pedestrian detection in thermal imagery[C]//Proceedings of International Conference on Image Analysis and Processing. Berlin, Germany: Springer, 2019: 203-213.
|
16 |
GRAZIANI M, ANDREARCZYK V, MÜLLER H. Visualizing and interpreting feature reuse of pretrained CNNs for histopathology[C]//Proceedings of IMVIP 2019: Irish Machine Vision and Image Processing Conference Proceedings. Dublin, Ireland: Technological University Dublin, 2019: 28.
|
17 |
HERRMANN C, RUF M, BEYERER J, et al. CNN-based thermal infrared person detection by domain adaptation[M]//MICHAEL C D. Autonomous systems: sensors, vehicles, security, and the internet of everything. Orlando, USA: SPIE, 2018: 38-43.
|
18 |
GUO T T, HUYNH C P, SOLH M. Domain-adaptive pedestrian detection in thermal images[C]//Proceedings of the IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2019: 1660-1664.
|
19 |
|
20 |
|
21 |
PRAJAPATI K, CHUDASAMA V, PATEL H, et al. Channel split convolutional neural network(ChaSNet) for thermal image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 4363-4372.
|
22 |
DU J M, LU H Z, HU M F, et al. CNN-based infrared dim small target detection algorithm using target-oriented shallow-deep features and effective small anchor. IET Image Processing, 2021, 15 (1): 1- 15.
doi: 10.1049/ipr2.12001
|
23 |
|
24 |
XU M J, QIN L Y, CHEN W J, et al. Multi-view adversarial discriminator: mine the non-causal factors for object detection in unseen domains[EB/OL]. [2023-13-17]. https://arxiv.org/pdf/2304.02950.pdf.
|
25 |
章永来, 周耀鉴. 聚类算法综述. 计算机应用, 2019, 39 (7): 1869- 1882.
URL
|
|
ZHANG Y L, ZHOU Y J. Review of clustering algorithms. Journal of Computer Applications, 2019, 39 (7): 1869- 1882.
URL
|