[1] 罗思哲.基于图神经网络的AIS轨迹相似度计算方法及
其应用研究[D].上海海事大学,2023.DOI:10.27304/d.cnk
i.gshhc.2023.000021.
LUO S Z. Research on AIS Trajectory Similarity
Calculation Method Based on Graph Neural Network and
Its Application [D]. Shanghai Maritime University, 2023.
DOI:10.27304/d.cnki.gshhc.2023.000021.( in Chinese)
[2] 谢新连,刘超,魏照坤.海洋气象环境影响下的复杂水域
船舶路径规划[J].重庆交通大学学报(自然科学版),2021,
40(02):1-7+20
XIE X L, LIU C, WEI Z K. Ship Path Planning in
Complex Waters under the Influence of Marine
Meteorological Environment [J]. Journal of Chongqing
Jiaotong University (Natural Science Edition), 2021,
40(02): 1–7+20.(in Chinese)
[3] NGUYEN D, FABLET R. A transformer network wit
h sparse augmented data representation and cross entr
opy loss for ais-based vessel trajectory prediction[J]. I
EEE Access, 2024, 12: 21596-21609.
[4] CAPOBIANCO S, MILLEFIORI L M, FORTI N, et
al. Deep learning methods for vessel trajectory predic
tion based on recurrent neural networks[J]. IEEE Tran
sactions on Aerospace and Electronic Systems, 2021,
57(6): 4329-4346.
[5] 郑晨俊,曾艳,袁俊峰,等.基于联邦学习的船舶AIS轨迹
预测算法[J].计算机工程,2024,50(02):298-307.DOI:10.1
9678/j.issn.1000-3428.0067829.
ZHENG C J, ZENG Y, YUAN J F, et al. Ship AIS
Trajectory Prediction Algorithm Based on Federated
Learning[J]. Computer Engineering, 2024, 50(02): 298
307. DOI:10.19678/j.issn.1000-3428.0067829.
[6]
[7]
[8]
[9]
李林.基于时空数据的海上船舶轨迹异常分析与系统实
现[D].青岛科技大学,2022.DOI:10.27264/d.cnki.gqdhc.2
022.000521.
LI L. Maritime Vessel Trajectory Anomaly Analysis and
System Implementation Based on Spatiotemporal Data
[D]. Qingdao University of Science and Technology, 2022.
DOI:10.27264/d.cnki.gqdhc.2022.000521.( in Chinese)
LI X, ZHAO K, CONG G, et al. Deep representation
learning for trajectory similarity computation[C]//201
8 IEEE 34th international conference on data enginee
ring (ICDE). IEEE, 2018: 617-628.
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient
based learning applied to document recognition[J]. Pr
oceedings of the IEEE, 1998, 86(11): 2278-2324.
LIANG M, LIU R W, LI S, et al. An unsupervised l
earning method with convolutional auto-encoder for v
essel trajectory similarity computation[J]. Ocean Engin
eering, 2021, 225: 108803.
[10] RONNEBERGER O, FISCHER P, BROX T. U-net: C
onvolutional networks for biomedical image segmentat
ion[C]//Medical image computing and computer-assiste
d intervention–MICCAI 2015: 18th international confe
rence, Munich, Germany, October 5-9, 2015, proceedi
ngs, part III 18. Springer international publishing, 201
5: 234-241.
[11] ZHENG Y. Trajectory data mining: an overview[J]. A
CM Transactions on Intelligent Systems and Technolo
gy (TIST), 2015, 6(3): 1-41.
[12] Li H, Liu J, Liu R W, et al. A dimensionality reduct
ion-based multi-step clustering method for robust vess
el trajectory analysis[J]. Sensors, 2017, 17(8): 1792.
[13] ALT H. The computational geometry of comparing sh
apes[J]. Efficient Algorithms: Essays Dedicated to Ku
rt Mehlhorn on the Occasion of His 60th Birthday, 2
009: 235-248.
[14] FRÉCHET M. Sur quelques points du calcul fonction
nel[J]. 1906.
[15] CHEN L T, GAO J Q, ZHENG J. Data-driven typho
on case retrieval method based on spatiotemporal traj
ectory similarity and risk preferences of decision-mak
ers[J]. International Journal of Disaster Risk Reductio
n, 2024, 103: 104312.
[16] ZHANG Y, SHI G. Trajectory similarity measure desi
gn for ship trajectory clustering[C]//2021 IEEE 6th in
ternational conference on big data analytics (ICBDA).
IEEE, 2021: 181-187.
[17] WANG L, LIN C, MA L, et al. A Ship AIS Spatio
Temporal Trajectory Clustering Method Based on Cou
rse Deviation[C]//2023 IEEE 11th Joint International I
nformation Technology and Artificial Intelligence Con
ference (ITAIC). IEEE, 2023, 11: 437-440.
[18] FU P, WANG H, LIU K, et al. Finding abnormal ve
ssel trajectories using feature learning[J]. IEEE Acces
s, 2017, 5: 7898-7909.
[19] ZHANG Y, LIU A, LIU G, et al. Deep representatio
n learning of activity trajectory similarity computation
[C]//2019 IEEE International Conference on Web Serv
ices (ICWS). IEEE, 2019: 312-319.
[20] FANG Z, DU Y, ZHU X, et al. Spatio-temporal traje
ctory similarity learning in road networks[C]//Proceedi
ngs of the 28th ACM SIGKDD conference on knowl
edge discovery and data mining. 2022: 347-356.
[21] ZHANG R, RONG Y, WU Z, et al. Trajectory simila
rity assessment on road networks via embedding learn
ing[C]//2020 ieee sixth international conference on mu
ltimedia big data (bigmm). IEEE, 2020: 1-8.
[22] CHEN Y, YU P, CHEN W, et al. Embedding-based s
imilarity computation for massive vehicle trajectory d
ata[J]. IEEE Internet of Things Journal, 2021, 9(6): 4
650-4660.
[23] HUANG F, LV J, YUE Y. Jointly spatial-temporal re
presentation learning for individual trajectories[J]. Co
mputers, Environment and Urban Systems, 2024, 112:
102144.
[24] YAO D, HU H, DU L, et al. TrajGAT: A graph-base
d long-term dependency modeling approach for traject
ory similarity computation[C]//Proceedings of the 28th
ACM SIGKDD conference on knowledge discovery
and data mining. 2022: 2275-2285.
[25] PANDHRE S, MITTAL H, GUPTA M, et al. Stwalk:
learning trajectory representations in temporal graphs
[C]//Proceedings of the ACM India joint international
conference on data science and management of data.
2018: 210-219.
[26] HAN P, WANG J, YAO D, et al. A graph-based app
roach for trajectory similarity computation in spatial n
etworks[C]//Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining.
2021: 556-564.
[27] MICHELUCCI U. An introduction to autoencoders[J].
arXiv preprint arXiv:2201.03898, 2022.
[28] YAO D, ZHANG C, ZHU Z, et al. Trajectory cluster
ing via deep representation learning[C]//2017 internati
onal joint conference on neural networks (IJCNN). IE
EE, 2017: 3880-3887.
[29] GOODFELLOW I, BENGIO Y, COURVILLE A. Dee
p learning[M]. Cambridge: MIT Press, 2016.
[30] GU T, FANG J, PAN Z, et al. HPS: A novel heurist
ic hierarchical pruning strategy for dynamic top-k traj
ectory similarity query[J]. Information Processing &
Management, 2024, 61(6): 103828.
[31] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss
for dense object detection[C]//Proceedings of the IEE
E international conference on computer vision. 2017:
2980-2988.
[32] LAXMI SREE B R, VIJAYA M S. A weighted mean
square error technique to train deep belief networks f
or imbalanced data[J]. International Journal of Simulat
ion: Systems, Science & Technology,2018,19(6). |