| 1 |
罗思哲. 基于图神经网络的AIS轨迹相似度计算方法及其应用研究[D]. 上海: 上海海事大学, 2023.
|
|
LUO S Z. Research on AIS trajectory similarity calculation method based on graph neural network and its application[D]. Shanghai: Shanghai Maritime University, 2023. (in Chinese)
|
| 2 |
谢新连, 刘超, 魏照坤. 海洋气象环境影响下的复杂水域船舶路径规划. 重庆交通大学学报(自然科学版), 2021, 40 (2): 1-7, 20.
|
|
XIE X L , LIU C , WEI Z K . Ship path planning in complex water areas under the influence of marine meteorological environment. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40 (2): 1-7, 20.
|
| 3 |
NGUYEN D , FABLET R . A transformer network with sparse augmented data representation and cross entropy loss for AIS-based vessel trajectory prediction. IEEE Access, 2024, 12, 21596- 21609.
doi: 10.1109/ACCESS.2024.3349957
|
| 4 |
CAPOBIANCO S , MILLEFIORI L M , FORTI N , et al. Deep learning methods for vessel trajectory prediction based on recurrent neural networks. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57 (6): 4329- 4346.
doi: 10.1109/TAES.2021.3096873
|
| 5 |
郑晨俊, 曾艳, 袁俊峰, 等. 基于联邦学习的船舶AIS轨迹预测算法. 计算机工程, 2024, 50 (2): 298- 307.
doi: 10.19678/j.issn.1000-3428.0067829
|
|
ZHENG C J , ZENG Y , YUAN J F , et al. Ship AIS trajectory prediction algorithm based on federated learning. Computer Engineering, 2024, 50 (2): 298- 307.
doi: 10.19678/j.issn.1000-3428.0067829
|
| 6 |
李林. 基于时空数据的海上船舶轨迹异常分析与系统实现[D]. 青岛: 青岛科技大学, 2022.
|
|
LI L. Maritime vessel trajectory anomaly analysis and system implementation based on spatiotemporal data[D]. Qingdao: Qingdao University of Science & Technology, 2022. (in Chinese)
|
| 7 |
LI X C, ZHAO K Q, CONG G, et al. Deep representation learning for trajectory similarity computation[C]//Proceedings of the IEEE 34th International Conference on Data Engineering (ICDE). Washington D.C., USA: IEEE Press, 2018: 617-628.
|
| 8 |
LECUN Y , BOTTOU L , BENGIO Y , et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324.
doi: 10.1109/5.726791
|
| 9 |
LIANG M H , LIU R W , LI S C , et al. An unsupervised learning method with convolutional auto-encoder for vessel trajectory similarity computation. Ocean Engineering, 2021, 225, 108803.
doi: 10.1016/j.oceaneng.2021.108803
|
| 10 |
RONNEBERGER O , FISCHER P , BROX T . U-Net: convolutional networks for biomedical image segmentation. Berlin, Germany: Springer International Publishing, 2015.
|
| 11 |
ZHENG Y . Trajectory data mining. ACM Transactions on Intelligent Systems and Technology, 2015, 6 (3): 1- 41.
|
| 12 |
LI H H , LIU J X , LIU R W , et al. A dimensionality reduction-based multi-step clustering method for robust vessel trajectory analysis. Sensors, 2017, 17 (8): 1792.
doi: 10.3390/s17081792
|
| 13 |
ALT H . The computational geometry of comparing shapes. Berlin, Germany: Springer, 2009.
|
| 14 |
|
| 15 |
CHEN L T , GAO J Q , ZHENG J . Data-driven typhoon case retrieval method based on spatiotemporal trajectory similarity and risk preferences of decision-makers. International Journal of Disaster Risk Reduction, 2024, 103, 104312.
doi: 10.1016/j.ijdrr.2024.104312
|
| 16 |
ZHANG Y, SHI G. Trajectory similarity measure design for ship trajectory clustering[C]//Proceedings of 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA). Washington D.C., USA: IEEE Press, 2021: 181-187.
|
| 17 |
WANG L, LIN C C, MA L F, et al. A ship AIS spatio-temporal trajectory clustering method based on course deviation[C]//Proceedings of the IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Washington D.C., USA: IEEE Press, 2023: 437-440.
|
| 18 |
FU P G , WANG H Z , LIU K E , et al. Finding abnormal vessel trajectories using feature learning. IEEE Access, 2017, 5, 7898- 7909.
doi: 10.1109/ACCESS.2017.2698208
|
| 19 |
ZHANG Y F, LIU A, LIU G F, et al. Deep representation learning of activity trajectory similarity computation[C]//Proceedings of the IEEE International Conference on Web Services (ICWS). Washington D.C., USA: IEEE Press, 2019: 312-319.
|
| 20 |
FANG Z Q, DU Y T, ZHU X J, et al. Spatio-temporal trajectory similarity learning in road networks[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 347-356.
|
| 21 |
ZHANG R, RONG Y C, WU Z L, et al. Trajectory similarity assessment on road networks via embedding learning[C]//Proceedings of the IEEE 6th International Conference on Multimedia Big Data (BigMM). Washington D.C., USA: IEEE Press, 2020: 1-8.
|
| 22 |
CHEN Y Y , YU P , CHEN W W , et al. Embedding-based similarity computation for massive vehicle trajectory data. IEEE Internet of Things Journal, 2022, 9 (6): 4650- 4660.
doi: 10.1109/JIOT.2021.3107327
|
| 23 |
HUANG F , LV J R , YUE Y . Jointly spatial-temporal representation learning for individual trajectories. Computers, Environment and Urban Systems, 2024, 112, 102144.
doi: 10.1016/j.compenvurbsys.2024.102144
|
| 24 |
YAO D, HU H N, DU L, et al. TrajGAT: a graph-based long-term dependency modeling approach for trajectory similarity computation[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 2275-2285.
|
| 25 |
PANDHRE S, MITTAL H, GUPTA M, et al. Stwalk: learning trajectory representations in temporal graphs[C]//Proceedings of the ACM India Joint International Conference on Data Science and Management of Data. New York, USA: ACM Press, 2018: 210-219.
|
| 26 |
HAN P, WANG J, YAO D, et al. A graph-based approach for trajectory similarity computation in spatial networks[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2021: 556-564.
|
| 27 |
|
| 28 |
YAO D, ZHANG C, ZHU Z H, et al. Trajectory clustering via deep representation learning[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN). Washington D.C., USA: IEEE Press, 2017: 3880-3887.
|
| 29 |
GOODFELLOW I , BENGIO Y , COURVILLE A . Deep learning. Cambridge, USA: MIT Press, 2016.
|
| 30 |
GU T Y , FANG J H , PAN Z C , et al. HPS: a novel heuristic hierarchical pruning strategy for dynamic top-k trajectory similarity query. Information Processing & Management, 2024, 61 (6): 103828.
|
| 31 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 2999-3007.
|
| 32 |
|