作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2007, Vol. 33 ›› Issue (08): 170-172.

• 人工智能及识别技术 • 上一篇    下一篇

基于密度的微粒群优化混合聚类算法

单世民1,邓贵仕1,何英昊2   

  1. (1. 大连理工大学系统工程研究所,大连 116023;2. 大连理工大学城市学院,大连 116600)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-04-20 发布日期:2007-04-20

Hybridization Clustering Algorithm of Particle Swarm Optimization Based on Density

SHAN Shimin1, DENG Guishi1, HE Yinghao2   

  1. (1. Institute of Systems Engineering, Dalian University of Technology, Dalian 116023; 2. City Institute, Dalian University of Technology, Dalian 116600)
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-04-20 Published:2007-04-20

摘要: 在分析了现有的基于密度的聚类算法的基础上,结合微粒群算法,提出了一种基于密度的微粒群混合聚类算法。相对于DENCLUE聚类算法,该算法能够对使用的资源进行有效的控制,有利于实现对数据库数据的增量处理。实验证明了算法的有效性。

关键词: 聚类, 微粒群优化, 密度聚类

Abstract: A hybridization of the PSO with density-based clustering algorithm is presented in the paper. The algorithm is suitable to process the incremental data compared to the DENCLUE. Besides, the resource used in the algorithm is limited. Several experiments are performed to test the algorithm. The results indicate the efficiency of the algorithm.

Key words: Clustering, Particle swarm optimization (PSO), Density-based clustering

中图分类号: