作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2013, Vol. 39 ›› Issue (6): 28-33. doi: 10.3969/j.issn.1000-3428.2013.06.005

• 专栏 • 上一篇    下一篇

基于压缩感知的CoSaMP算法自适应性改进

闫 鹏,王阿川   

  1. (东北林业大学信息与计算机工程学院,哈尔滨 150040)
  • 收稿日期:2012-07-11 出版日期:2013-06-15 发布日期:2013-06-14
  • 作者简介:闫 鹏(1987-),男,硕士研究生,主研方向:计算机视觉,压缩感知;王阿川,教授、博士
  • 基金资助:

    黑龙江省教育厅基金资助项目(12513008);中国石油和化学工业联合会基金资助项目“基于红外技术的油页岩制油气反应炉温度监控技术研究”

Adaptivity Improvement of CoSaMP Algorithm Based on Compressive Sensing

YAN Peng, WANG A-chuan   

  1. (College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China)
  • Received:2012-07-11 Online:2013-06-15 Published:2013-06-14

摘要:

压缩感知重构算法在实际应用中需要预知信号稀疏度,而信号的稀疏度通常是未知的。为此,改进压缩采样匹配追踪(CoSaMP)算法的自适应性,提出一种稀疏度自适应贪婪算法。对信号稀疏度进行初始估计,结合SAMP算法思想,以残差值比对为终止条件,在CoSaMP算法框架下进行稀疏度逐步增大的递归运算,实现精确重构。仿真实验结果证明,该算法重构精度高、抗噪能力强,同时具备稀疏度自适应的特点。

关键词: 压缩感知, 贪婪重构算法, 匹配追踪, 递归, 稀疏估计

Abstract:

Compressive sensing reconstruction algorithm needs to predict sparse degree of the signal, however the sparse degree is always impossible to obtain in the practical application. In order to improve the sparsity adaptive problem of the CoSaMP algorithm, a new algorithm is proposed for the signal reconstruction. It initially estimates the sparse degree, combined with the idea of SAMP algorithm, the sparse degree gradually increases under the framework of CoSaMP algorithm. With the comparison of residual value for termination condition, it can exactly recover original signal after few recursive operations. Results show that the new algorithm can exactly recover original signal at the noisy condition and owns the characteristics of sparsity adaption.

Key words: compressive sensing, greedy reconstruction algorithm, matching pursuit, recursion, sparse estimation

中图分类号: