参考文献
[ 1 ] 陆 爽. 基于奇异值分解和支持向量机的滚动轴承故
障模式识别[J]. 农业工程学报,2007,23(4):115-119.
[ 2 ] 赵学智,叶邦彦,林 颖. 奇异值分解对轴承振动信号
中调幅特征信息的提取[J]. 北京理工大学学报,
2011,31(5):572-577.
[ 3 ] Sugumarana V,Ramachandranb K I. Effect of Number
of Features on Classification of Roller Bearing Faults
Using SVM and PSVM [ J ]. Expert Systems with
Applications,2011,38(4):4088-4096.
[ 4 ] 罗颂荣,程军圣,郑近德. 基于ITD 分形模糊熵的轴承
早期故障诊断[J]. 振动、测试与诊断,2013,33(4):
706-711.
[ 5 ] Lehtola L,Karsikas M, Koskinen M, et a1. Effects of
Noise and Filtering on SVD-based Morphological
Parameters of the T Wave in the ECG [J]. Journal of
Medical Engineering and Technology, 2008, 32 (5):
400-407.
[ 6 ] 张 超,陈建军,杨立东,等. 奇异值熵和支持向量机
的齿轮故障诊断[J]. 振动、测试与诊断,2011,31(5):
600-604.
[ 7 ] 赵学智,叶邦彦,陈统坚. 矩阵构造对奇异值分解信号
处理效果的影响[J]. 华南理工大学学报:自然科学
版,2008,36(9):86-93.
[ 8 ] 赵学智,叶邦彦,陈统坚. 基于奇异值曲率谱的有效奇
异值选择[J]. 华南理工大学学报:自然科学版,2010,
38(6):11-18,23.
[ 9 ] Li X J,Bin G F,Gao J J,et al. Early Fault Diagnosis of
Rotating Machinery Based on Wavelet Packets-empirical
Mode Decomposition Feature Extraction and Neural
Network [ J ]. Mechanical Systems and Signal Processing,
2012,27:696-711.
[10] Raghuraj R, Lakshminarayanan S. VPMCD: Variable
Interaction Modeling Approach for Class Discrimination
in Biological Systems [ J ]. Federation of European
Biochemical Societies Letters, 2007, 581 (5/ 6): 826-
830.
[11] Raghuraj R, Lakshminarayanan S. Variable Predictive
Model Based Classification Algorithm for Effective
Separation of Protein Structural Classes [ J ]. Computational
Biology and Chemistry,2008,32 (4):302-
306.
[12] Raghuraj R, Lakshminarayanan S. Variable Predictive
Models———A New Multivariate Classification Approach
for Pattern Recognition Applications[J]. Pattern Recognition,
2009,42(1):7-16.
[13] 杨 宇,李 杰,潘海洋,等. VPMCD 和改进ITD 的联
合智能诊断方法研究[ J ]. 振动工程学报,2013,
26(4):608-616.
[14] Yang Yu,Wang Huanhuan, Cheng Junsheng, et a1. A
Fault Diagnosis Approach for Roller Bearing Based on
VPMCD Under Variable Speed Condition[J]. Measurement,
2013,46(8):2306-2312.
编辑 刘 冰 |