作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (2): 103-110,117. doi: 10.19678/j.issn.1000-3428.0056763

• 人工智能与模式识别 • 上一篇    下一篇

基于多标签策略的中文知识图谱问答系统研究

朱宗奎, 张鹏举, 贾永辉, 陈文亮, 张民   

  1. 苏州大学 计算机科学与技术学院, 江苏 苏州 215006
  • 收稿日期:2019-12-02 修回日期:2020-02-05 出版日期:2021-02-15 发布日期:2020-02-07
  • 作者简介:朱宗奎(1994-),男,硕士研究生,主研方向为自然语言处理;张鹏举、贾永辉,硕士研究生;陈文亮,教授、博士;张民,教授、博士、博士生导师。
  • 基金资助:
    国家自然科学基金(61936010)。

Study of Chinese Knowledge Base Question Answering System Based on Multi-Label Strategy

ZHU Zongkui, ZHANG Pengju, JIA Yonghui, CHEN Wenliang, ZHANG Min   

  1. School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
  • Received:2019-12-02 Revised:2020-02-05 Online:2021-02-15 Published:2020-02-07

摘要: 现有多数中文知识图谱问答(CKBQA)系统侧重于回答单个三元组查询的简单问题,而不能有效解决涉及多个实体和关系的复杂问题。提出一种基于多标签策略进行答案搜索的CKBQA系统,该系统主要包括问题处理和答案搜索2个部分。在问题处理部分,结合预训练语言模型构建新的模型框架,对问题进行实体提及识别、实体链接和关系抽取处理,通过设置3种分类标签将问题划分为简单问题、链式问题和多实体问题。在答案搜索部分,对上述3种分类问题分别给出不同的解决方法。实验结果表明,该系统在CCKS2019-CKBQA评测数据验证集上的平均F1值可达66.76%。

关键词: 知识图谱, 问答系统, 分类, 多标签策略, 实体, 关系

Abstract: Most of the existing Chinese Knowledge Base Question Answering(CKBQA) system focus on simple questions that need a single triplet query,but cannot solve complex questions involving multiple entities and relations. To address the problem,this paper proposes a CKBQA system for answer search based on multi-label strategy.The system mainly consists of two parts:question processing and answer search.In the question processing part,a new model framework is constructed based on the pre-trained language model to perform entity mention recognition,entity linking and relation extraction for the questions.By setting three classification labels,the questions are divided into simple questions,chain questions and multi-entity questions.In the answer search part,different processing methods are given for the above three kinds of classification questions.The experimental results show that the average F1 value of the proposed system reaches 66.76% on the validation set of evaluation data,CCKS2019-CKBQA.

Key words: knowledge base, question answering system, classification, multi-label strategy, entity, relation

中图分类号: