[1] SHELHAMER E, LONG J, DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence.Washington D.C., USA:IEEE Press, 2015:640-651. [2] RONNEBERGER O, FISCHER P, BROX T.U-net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2015:234-241. [3] 易盟, 隋立春.基于改进全卷积神经网络的航拍图像语义分类方法[J].计算机工程, 2017, 43(10):216-221. YI M, SUI LI C.Aerial image semantic classification method based on improved full convolution neural network[J].Computer Engineering, 2017, 43(10):216-221.(in Chinese) [4] CHEN L C, ZHU Y K, PAPANDREOU G, et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:801-818. [5] BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. [6] HUANG Z L, WANG X G, WEI Y C, et al.CCNet:criss-cross attention for semantic segmentation[C]//Proceedings of IEEE International Conference on Transactions on Pattern Analysis and Machine Intelligence.Washington D.C., USA:IEEE Press, 2019:603-612. [7] IOFFE S, SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of International Conference on Machine Learning.Washington D.C., USA:IEEE Press, 2015:448-456. [8] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [9] FU J, LIU J, TIAN H J, et al.Dual attention network for scene segmentation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:3141-3149. [10] HOU Q B, ZHANG L, CHENG M M, et al.Strip pooling:rethinking spatial pooling for scene parsing[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:4002-4011. [11] ZHANG Z L, ZHANG X Y, PENG C, et al.ExFuse:enhancing feature fusion for semantic segmentation[C]//Proceedings of European Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2018:269-284. [12] FAN M Y, LAI S Q, HUANG J S, et al.Rethinking BiSeNet for real-time semantic segmentation[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:9716-9725. [13] CHEN L C, YANG Y, WANG J, et al.Attention to scale:scale-aware semantic image segmentation[C]//Proceedings of 2016 Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:3640-3649. [14] YANG S Q, PENG G.Attention to refine through multi scales for semantic segmentation[C]//Proceedings of Conference on Multimedia Information.Washington D.C., USA:IEEE Press, 2018:232-241. [15] TAO A, SAPRA K, CATANZARO B.Hierarchical multi-scale attention for semantic segmentation[EB/OL].[2021-09-11].https://arxiv.org/abs/2005.10821. [16] DAI J F, HE K M, SUN J.BoxSup:exploiting bounding boxes to supervise convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1635-1643. [17] PAPANDREOU G, KOKKINOS I, SAVALLE P A.Untangling local and global deformations in deep convolutional networks for image classification and sliding window detection[EB/OL].[2021-09-11].https://arxiv.org/abs/1412.0296. [18] CORDTS M, OMRAN M, RAMOS S, et al.The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:3213-3223. [19] MOU L, ZHAO Y T, FU H Z, et al.CS2-Net:deep learning segmentation of curvilinear structures in medical imaging[J].Medical Image Analysis, 2021, 67:74-79. [20] CHEN K, WANG J Q, PANG J M, et al.MMDetection:open MMLab detection toolbox and benchmark[EB/OL].[2021-09-11].https://arxiv.org/abs/1906.07155. [21] PASZKE A, GROSS S, MASSA F, et al.PyTorch:an imperative style, high-performance deep learning library[EB/OL].[2021-09-11].https://arxiv.org/abs/1912.01703. [22] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [23] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2999-3007. |