[1] 田萱,王亮,丁琪.基于深度学习的图像语义分割方法综述[J].软件学报, 2019, 30(2):440-468. TIAN X, WANG L, DING Q. Review of image semantic segmentation based on deep learning[J]. Journal of Software, 2019, 30(2):440-468.(in Chinese) [2] 景庄伟,管海燕,彭代峰,等.基于深度神经网络的图像语义分割研究综述[J].计算机工程, 2020, 46(10):1-17. JING Z W, GUAN H Y, PENG D F, et al. Survey of research in image semantic segmentation based on deep neural network[J]. Computer Engineering, 2020, 46(10):1-17.(in Chinese) [3] HUANG L K, WANG M J J. Image thresholding by minimizing the measures of fuzziness[J]. Pattern Recognition, 1995, 28(1):41-51. [4] 陆剑锋,林海,潘志庚.自适应区域生长算法在医学图像分割中的应用[J].计算机辅助设计与图形学学报, 2005, 17(10):2168-2173. LU J F, LIN H, PAN Z G. Adaptive region growing algorithm in medical images segmentation[J]. Journal of Computer Aided Design&Computer Graphics, 2005, 17(10):2168-2173.(in Chinese) [5] HONG L, WAN Y F, JAIN A. Fingerprint image enhancement:algorithm and performance evaluation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8):777-789. [6] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2015:3431-3440. [7] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. [8] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[EB/OL].[2023-06-05].https://arxiv.org/abs/1505.04597. [9] ORSIC M, KRESO I, BEVANDIC P, et al. In defense of pre-trained ImageNet architectures for real-time semantic segmentation of road-driving images[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2019:12607-12616. [10] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNetV2:practical guidelines for efficient CNN architecture design[C]//Proceedings of the 15th European Conference on Computer Vision. New York,USA:ACM Press,2018:122-138. [11] PASZKE A, CHAURASIA A, KIM S, et al. ENet:a deep neural network architecture for real-time semantic segmentation[EB/OL].[2023-06-05].https://arxiv.org/abs/1606.02147. [12] ZHAO H S, QI X J, SHEN X Y, et al. ICNet for real-time semantic segmentation on high-resolution images[C]//Proceedings of the 15th European Conference on Computer Vision. New York,USA:ACM Press,2018:418-434. [13] YU C Q, WANG J B, PENG C, et al. BiSeNet:bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. New York,USA:ACM Press,2018:334-349. [14] YU C Q, GAO C X, WANG J B, et al. BiSeNetV2:bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129(11):3051-3068. [15] LI H C, XIONG P F, FAN H Q, et al. DFANet:deep feature aggregation for real-time semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2019:9522-9531. [16] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2017:1251-1258. [17] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2018:7132-7141. [18] WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[EB/OL].[2023-06-05].https://arxiv.org/abs/1807.06521. [19] LI X, WANG W H, HU X L, et al. Selective kernel networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2019:510-519. [20] WANG Q L, WU B G, ZHU P F, et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2020:11534-11542. [21] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2017:2881-2890. [22] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916. [23] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [24] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL].[2023-06-05].https://arxiv.org/abs/1706.05587. [25] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. New York,USA:ACM Press,2018:833-851. [26] 马素刚,陈期梅,侯志强,等.基于密集连接与特征增强的语义分割算法[J].计算机工程, 2023, 49(3):263-270. MA S G, CHEN Q M, HOU Z Q, et al. Semantic segmentation algorithm based on dense connection and feature enhancement[J]. Computer Engineering, 2023, 49(3):263-270.(in Chinese) [27] WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2017:3156-3164. [28] WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D.C.,USA:IEEE Press,2018:1451-1460. |