[1] 李幼蛟, 卓力, 张菁, 等.行人再识别技术综述[J].自动化学报, 2018, 44(9):1554-1568. LI Y J, ZHOU L, ZHANG J, et al.A survey of person re-identification[J].Acta Automatica Sinica, 2018, 44(9):1554-1568.(in Chinese) [2] JIN X, LAN C, ZENG W, et al.Style normalization and restitution for generalizable person re-identification[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:3140-3149. [3] ZHANG Z, LAN C, ZENG W, et al.Relation-aware global attention for person re-identification[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:3183-3192. [4] CHEN X, FU C, ZHAO Y, et al.Salience-guided cascaded suppression network for person re-identification[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:3297-3307. [5] ZHAO S, GAO C, ZHANG J, et al.Do not disturb me:person re-identification under the interference of other pedestrians[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:647-663. [6] FU Y, WEI Y, WANG G, et al.Self-similarity grouping:a simple unsupervised cross domain adaptation approach for person re-identification[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:6111-6120. [7] YAN Y, QIN J, CHEN J, et al.Learning multi-granular hypergraphs for video-based person re-identification[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:2896-2905. [8] ZHU J Y, PARK T, ISOLA P, et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2242-2251. [9] WEI L, ZHANG S, GAO W, et al.Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:79-88. [10] QIAN X, FU Y, XIANG T, et al.Pose-normalized image generation for person re-identification[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:650-667. [11] WU Y, LIN Y, DONG X, et al.Progressive learning for person re-identification with one example[J].IEEE Transactions on Image Processing, 2019, 28:2872-2881. [12] DENG W, ZHENG L, YE Q, et al.Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:994-1003. [13] ZHONG Z, ZHENG L, LI S, et al.Generalizing a person retrieval model hetero- and homogeneously[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:176-192. [14] 李佳宾, 李学伟, 刘宏哲, 等.基于局部特征关联与全局注意力机制的行人重识别[J].计算机工程, 2022, 48(1):245-252. LI J B, LI X W, LIU H Z, et al.Person re-identification based on local feature relation and global attention mechanism[J].Computer Engineering, 2022, 48(1):245-252.(in Chinese) [15] 库浩华, 周萍, 蔡晓东, 等.基于区域特征对齐与k倒排编码的行人再识别方法[J].计算机工程, 2019, 45(3):207-211. KU H H, ZHOU P, CAI X D, et al.Person re-identification method based on regional feature alignment and k-reciprocal encoding[J].Computer Engineering, 2019, 45(3):207-211.(in Chinese) [16] LIAO S, HU Y, ZHU X, et al.Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:2197-2206. [17] ZHENG L, SHEN L, TIAN L, et al.Scalable person re-identification:a benchmark[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1116-1124. [18] PENG P, XIANG T, WANG Y, et al.Unsupervised cross-dataset transfer learning for person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1306-1315. [19] YU H X, WU A, ZHENG W S.Cross-view asymmetric metric learning for unsupervised person re-identification[C]//Proceedings of ICCV'17.Washington D.C., USA:IEEE Press, 2017:994-1002. [20] FAN H, ZHENG L, YAN C, et al.Unsupervised person re-identification:clustering and fine-tuning[EB/OL].(2017-06-29)[2021-01-02].https://arxiv.org/pdf/1705.10444v2.pdf. [21] WANG J, ZHU X, GONG S, et al.Transferable joint attribute-identity deep learning for unsupervised person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:2275-2284. [22] LIN S, LI H, LI C T, et al.Multi-task mid-level feature alignment network for unsupervised cross-dataset person re-identification[EB/OL].(2018-07-11)[2021-01-02].https://arxiv.org/pdf/1807.01440.pdf. [23] ZHONG Z, ZHENG L, ZHENG Z D, et al.CamStyle:a novel data augmentation method for person re-identification[J].IEEE Transactions on Image Processing, 2019, 28(3):1176-1190. [24] YU H X, ZHENG W S, WU A C, et al.Unsupervised person re-identification by soft multilabel learning[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:2143-2152. |