[1] PISARSKI S, RUGALA A, BYRSKI A, et al.Evolutionary multi-agent system in hard benchmark continuous optimisation[M].Berlin, Heidelberg:Springer, 2013:132-141. [2] 李智翔, 李赟, 褚衍杰.基于改进平衡策略的多目标分解优化算法[J].计算机工程, 2019, 45(3):155-161. LI Z X, LI Y, CHU Y J.Decomposition multi-objective optimization algorithm based on improved balancing strategy[J].Computer Engineering, 2019, 45(3):155-161.(in Chinese) [3] ZHU Z X, WANG F X, HE S, et al.Global path planning of mobile robots using a memetic algorithm[J].International Journal of Systems Science, 2015, 46(11):1982-1993. [4] HIERONS R M, LI M Q, LIU X H, et al.SIP:optimal product selection from feature models using many-objective evolutionary optimization[J].ACM Transactions on Software Engineering and Methodology, 2016, 25(2):17-29. [5] ONG Y S, GUPTA A.Evolutionary multitasking:a computer science view of cognitive multi-tasking[J].Cognitive Computation, 2016, 8(2):125-142. [6] XU Q Z, WANG N, WANG L, et al.Multi-task optimization and multi-task evolutionary computation in the past five years:a brief review[J].Mathematics, 2021, 9(8):864-873. [7] YANG C E, DING J L, JIN Y C, et al.Multitasking multi-objective evolutionary operational indices optimization of beneficiation processes[J].IEEE Transactions on Automation Science and Engineering, 2019, 16(3):1046-1057. [8] BALI K K, GUPTA A, FENG L, et al.Linearized domain adaptation in evolutionary multitasking[C]//Proceedings of 2017 IEEE Congress on Evolutionary Computation.Washington D.C., USA:IEEE Press, 2017:1295-1302. [9] GUPTA A, ONG Y S, FENG L, et al.Multi objective multifactorial optimization in evolutionary multitasking[J].IEEE Transactions on Cybernetics, 2017, 47(7):1652-1665. [10] FENG L, ZHOU L, ZHONG J H, et al.Evolutionary multitasking via explicit autoencoding[J].IEEE Transactions on Cybernetics, 2019, 49(9):3457-3470. [11] SHEN Y, LI Y, KANG H W, et al.Research on swarm size of multi-swarm particle swarm optimization algorithm[C]//Proceedings of the 4th International Conference on Computer and Communications.Washington D.C., USA:IEEE Press, 2018:37-43. [12] 邱宁佳, 李娜, 胡小娟, 等.基于粒子群优化的朴素贝叶斯改进算法[J].计算机工程, 2018, 44(11):27-32, 39. QIU N J, LI N, HU X J, et al.Improved native Bayes algorithm based on particle swarm optimization[J].Computer Engineering, 2018, 44(11):27-32, 39.(in Chinese) [13] 刘树强, 秦进.一种求解动态优化问题的改进自适应差分进化算法[J].计算机工程, 2021, 47(4):84-91, 99. LIU S Q, QIN J.An improved self-adaptive differential evolution algorithm for solving dynamic optimization problem[J].Computer Engineering, 2021, 47(4):84-91, 99.(in Chinese) [14] 吕铭晟, 沈洪远, 李志高, 等.多变异策略差分进化算法的研究与应用[J].计算机工程, 2014, 40(12):146-150. LÜM S, SHEN H Y, LI Z G, et al.Research and application of differential evolution algorithm under multiple mutation strategy[J].Computer Engineering, 2014, 40(12):146-150.(in Chinese) [15] CHEN Y L, ZHONG J H, TAN M K.A fast memetic multi-objective differential evolution for multi-tasking optimization[C]//Proceedings of 2018 IEEE Congress on Evolutionary Computation.Washington D.C., USA:IEEE Press, 2018:1-8. [16] LIN J B, LIU H L, TAN K C, et al.An effective knowledge transfer approach for multi objective multitasking optimization[J].IEEE Transactions on Cybernetics, 2021, 51(6):3238-3248. [17] SAGARNA R, ONG Y S.Concurrently searching branches in software tests generation through multitask evolution[C]//Proceedings of 2016 IEEE Symposium Series on Computational Intelligence.Washington D.C., USA:IEEE Press, 2016:46-56. [18] ZHOU L, FENG L, ZHONG J H, et al.A study of similarity measure between tasks for multifactorial evolutionary algorithm[C]//Proceedings of the Genetic and Evolutionary Computation Conference Companion.New York, USA:ACM Press, 2018:39-46. [19] GUPTA A, ONG Y S, DA B, et al.Landscape synergy in evolutionary multitasking[C]//Proceedings of 2016 IEEE Congress on Evolutionary Computation.Washington D.C., USA:IEEE Press, 2016:112-129. [20] LIANG J, QIAO K J, YUAN M H, et al.Evolutionary multi-task optimization for parameters extraction of photovoltaic models[J].Energy Conversion and Management, 2020, 207:112509-112524. [21] CHEN Y L, ZHONG J H, FENG L, et al.An adaptive archive-based evolutionary framework for many-task optimization[J].IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4(3):369-384. [22] BALI K K, GUPTA A, ONG Y S, et al.Cognizant multitasking in multiobjective multifactorial evolution:MO-MFEA-II[J].IEEE Transactions on Cybernetics, 2021, 51(4):1784-1796. [23] JIA Y H, ZHOU Y R, LIN Y, et al.A distributed cooperative co-evolutionary CMA evolution strategy for global optimization of large-scale overlapping problems[J].IEEE Access, 2019, 7:19821-19834. [24] HANSEN N.The CMA evolution strategy:a comparing review[EB/OL].[2021-07-09].https://link.springer.com/chapter/10.1007/3-540-32494-1_4. [25] YUAN Y, ONG Y S, FENG L, et al.Evolutionary multitasking for multiobjective continuous optimization:benchmark problems, performance metrics and baseline results[EB/OL].[2021-07-09].https://arxiv.org/abs/1706.02766. |