[1] NGUYEN G, DLUGOLINSKY S, BOBÁK M, et al. Machine learning and deep learning frameworks and libraries for large-scale data mining:a survey[J]. Artificial Intelligence Review, 2019, 52:77-124. [2] CHEN X J, BIAN J. Analysis of the application of machine learning algorithms in data mining[J]. Journal of Physics:Conference Series, 2020, 1550(3):e032039. [3] WARING J, LINDVALL C, UMETON R. Automated machine learning:review of the state-of-the-art and opportunities for healthcare[J]. Artificial Intelligence in Medicine, 2020, 104:101822. [4] XU X Y. Machine learning-based prediction of urban soil environment and corpus translation teaching[J]. Arabian Journal of Geosciences, 2021, 14:1-15. [5] ALMASKATI N. Machine learning in finance:major applications, issues, metrics, and future trends[J]. International Journal of Financial Engineering, 2022,9(3):2250010. [6] KIM J Y, HA H, CHUN B G, et al. Collaborative analytics for data silos[C]//Proceedings of the 32nd International Conference on Data Engineering. Washington D. C., USA:IEEE Press, 2016:743-754. [7] 刘艺璇, 陈红, 刘宇涵, 等. 联邦学习中的隐私保护技术[J]. 软件学报, 2021, 33(3):1057-1092. LIU Y X, CHEN H, LIU Y H, et al. Privacy-preserving techniques in federated learning[J]. Journal of Software, 2021, 33(3):1057-1092.(in Chinese) [8] REGULATION G D P. General data protection regulation (GDPR)[J]. Intersoft Consulting, Accessed in October, 2018, 24(1):1-10. [9] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL].[2023-04-25]. https://arxiv.org/pdf/1602.05629.pdf. [10] SONG T S, TONG Y X, WEI S Y. Profit allocation for federated learning[C]//Proceedings of International Conference on Big Data. Washington D. C., USA:IEEE Press, 2019:2577-2586. [11] ZHAN Y F, LI P, WANG K, et al. Big data analytics by crowdlearning:architecture and mechanism design[J]. IEEE Network, 2020, 34 (3):143-147. [12] 王鑫, 周泽宝, 余芸, 等.一种面向电能量数据的联邦学习可靠性激励机制[J].计算机科学,2022,49(3):31-38. WANG X, ZHOU Z B, YU Y, et al. Reliable incentive mechanism for federated learning of electric metering data[J]. Computer Science, 2022,49(3):31-38.(in Chinese) [13] 温依霖, 赵乃良, 曾艳, 等. 基于本地模型质量的客户端选择方法[J].计算机工程,2023,49(6):131-143. WEN Y L, ZHAO N L, ZENG Y, et al. Client selection method based on local model quality[J]. Computer Engineering, 2023,49(6):131-143. (in Chinese) [14] KANG J W, XIONG Z H, NIYATO D, et al. Incentive mechanism for reliable federated learning:a joint optimization approach to combining reputation and contract theory[J]. IEEE Internet of Things Journal, 2019, 6(6):10700-10714. [15] SARIKAYA Y, ERCETIN O. Motivating workers in federated learning:a Stackelberg game perspective[J]. IEEE Networking Letters, 2019, 2(1):23-27. [16] 周全兴, 李秋贤, 丁红发, 等.基于博弈论优化的高效联邦学习方案[J].计算机工程,2022,48(8):144-151,159. ZHOU Q X, LI Q X, DING H F, et al. Efficient federated learning scheme based on game theory optimization[J]. Computer Engineering, 2022,48(8):144-151,159. (in Chinese) [17] 梁文雅, 刘波, 林伟伟, 等.联邦学习激励机制研究综述[J].计算机科学,2022,49(12):46-52. LIANG W Y, LIN B, LIN W W, et al. Survey of incentive mechanism for federated learning[J]. Computer Science, 2022,49(12):46-52. (in Chinese) [18] SMITH V, CHIANG C K, SANJABI M, et al. Federated multi-task learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2017:4427-4437. [19] MARFOQ O, NEGLIA G, BELLET A, et al. Federated multi-task learning under a mixture of distributions[EB/OL].[2023-04-25]. https://arxiv.org/abs/2108.10252v4. [20] DENG Y H, LYU F, REN J, et al. FAIR:quality-aware federated learning with precise user incentive and model aggregation[C]//Proceedings of Conference on Computer Communications. Washington D. C., USA:IEEE Press, 2021:1-10. [21] HUI D, ZHUO L, XIN C. Quality-aware incentive mechanism design based on matching game for hierarchical federated learning[C]//Proceedings of Conference on Computer Communications Workshops. Washington D. C., USA:IEEE Press, 2022:1-6. [22] ZHAO Y, LI M, LAI L, et al. Federated learning with non-iid data[EB/OL].[2023-04-25].http://arXiv preprint arXiv:1806.00582, 2018. [23] 顾永跟,钟浩天,吴小红,等. 不平衡数据下预算限制的联邦学习激励机制[J].计算机应用研究,2022,39(11):3385-3389. GU Y G, ZHONG H T, WU X H, et al. Incentive mechanism for federated learning with budget constraints under unbalanced data[J]. Application Research of Computers, 2022,39(11):3385-3389.(in Chinese) [24] MYERSON R B. Optimal auction design[J]. Mathematics of Operations Research, 1981, 6(1):58-73. [25] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [26] KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Autoimmune Diseases, 2009, 1 (4):1-58. [27] DESAI H B, OZDAYI M S, KANTARCIOGLU M. BlockFLA:accountable federated learning via hybrid blockchain architecture[C]//Proceedings of the 11th Conference on Data and Application Security and Privacy. New York, USA:ACM Press, 2021:101-112. |