1 |
章璐璐, 李思照. 基于深度学习的智能体轨迹预测文献综述. 无线电工程, 2023, 53(3): 644- 656.
doi: 10.3969/j.issn.1003-3106.2023.03.018
|
|
ZHANG L L, LI S Z. A survey of agent trajectory prediction based on deep learning. Radio Engineering, 2023, 53(3): 644- 656.
doi: 10.3969/j.issn.1003-3106.2023.03.018
|
2 |
HOUENOU A, BONNIFAIT P, CHERFAOUI V, et al. Vehicle trajectory prediction based on motion model and maneuver recognition[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D. C., USA: IEEE Press, 2013: 4363-4369.
|
3 |
乔少杰, 韩楠, 朱新文, 等. 基于卡尔曼滤波的动态轨迹预测算法. 电子学报, 2018, 46(2): 418- 423.
doi: 10.3969/j.issn.0372-2112.2018.02.022
|
|
QIAO S J, HAN N, ZHU X W, et al. A dynamic trajectory prediction algorithm based on Kalman filter. Acta Electronica Sinica, 2018, 46(2): 418- 423.
doi: 10.3969/j.issn.0372-2112.2018.02.022
|
4 |
ABBAS M T, ALI J M, AFAQ M, et al. An adaptive approach to vehicle trajectory prediction using multimodel Kalman filter. Transactions on Emerging Telecommunications Technologies, 2020, 31(5): e3734.
doi: 10.1002/ett.3734
|
5 |
彭曲, 丁治明, 郭黎敏. 基于马尔可夫链的轨迹预测. 计算机科学, 2010, 37(8): 189- 193.
doi: 10.3969/j.issn.1002-137X.2010.08.041
|
|
PENG Q, DING Z M, GUO L M. Prediction of trajectory based on Markov chains. Computer Science, 2010, 37(8): 189- 193.
doi: 10.3969/j.issn.1002-137X.2010.08.041
|
6 |
李万高, 赵雪梅, 孙德厂. 基于改进贝叶斯方法的轨迹预测算法研究. 计算机应用, 2013, 33(7): 1960- 1963.
doi: 10.11772/j.issn.1001-9081.2013.07.1960
|
|
LI W G, ZHAO X M, SUN D C. Prediction of trajectory based on modified Bayesian inference. Journal of Computer Applications, 2013, 33(7): 1960- 1963.
doi: 10.11772/j.issn.1001-9081.2013.07.1960
|
7 |
刘莹. 基于深度学习的轨迹预测[D]. 成都: 电子科技大学, 2019.
|
|
LIU Y. Trajectory prediction based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese)
|
8 |
MIN K, KIM D, PARK J, et al. RNN-based path prediction of obstacle vehicles with deep ensemble. IEEE Transactions on Vehicular Technology, 2019, 68(10): 10252- 10256.
doi: 10.1109/TVT.2019.2933232
|
9 |
ALTCHE F, de La FORTELLE A. An LSTM network for highway trajectory prediction[C]//Proceedings of the 20th IEEE International Conference on Intelligent Transportation Systems. Washington D. C., USA: IEEE Press, 2017: 353-359.
|
10 |
DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1468-1476.
|
11 |
李超能, 冯冠文, 刘如意, 等. 一种基于重构误差的交通轨迹异常检测方法. 计算机科学, 2022, 49(2): 149- 155.
URL
|
|
LI C N, FENG G W, LIU R Y, et al. Traffic trajectory anomaly detection method based on reconstruction error. Computer Science, 2022, 49(2): 149- 155.
URL
|
12 |
方华强, 颜寒祺, 陈波, 等. 基于自编码网络的移动轨迹异常检测. 地理信息世界, 2019, 26(5): 41-44, 52.
URL
|
|
FANG H Q, YAN H Q, CHEN B, et al. Anomaly detection in mobile trajectory using auto-encoder network. Geomatics World, 2019, 26(5): 41-44, 52.
URL
|
13 |
PECHER P, HUNTER M, FUJIMOTO R. Data-driven vehicle trajectory prediction[C]//Proceedings of the 2016 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. New York, USA: ACM Press, 2016: 13-22.
|
14 |
王益. 结合周围车辆轨迹和高精地图的自动驾驶车辆轨迹预测研究[D]. 重庆: 重庆交通大学, 2022.
|
|
WANG Y. Research on autonomous vehicle trajectory prediction combining surrounding vehicle trajectory and HD maps[D]. Chongqing: Chongqing Jiaotong University, 2022. (in Chinese)
|
15 |
田彦涛, 黄兴, 卢辉遒, 等. 基于注意力与深度交互的周车多模态行为轨迹预测. 吉林大学学报(工学版), 2023, 53(5): 1474- 1480.
URL
|
|
TIAN Y T, HUANG X, LU H Q, et al. Multi-mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474- 1480.
URL
|
16 |
李文礼, 韩迪, 石晓辉, 等. 基于时-空注意力机制的车辆轨迹预测. 中国公路学报, 2023, 36(1): 226- 239.
URL
|
|
LI W L, HAN D, SHI X H, et al. Vehicle trajectory prediction based on spatial-temporal attention mechanism. China Journal of Highway and Transport, 2023, 36(1): 226- 239.
URL
|
17 |
刘创, 梁军. 基于注意力机制的车辆运动轨迹预测. 浙江大学学报(工学版), 2020, 54(6): 1156- 1163.
URL
|
|
LIU C, LIANG J. Vehicle motion trajectory prediction based on attention mechanism. Journal of Zhejiang University(Engineering Science), 2020, 54(6): 1156- 1163.
URL
|
18 |
GAO J Y, SUN C, ZHAO H, et al. VectorNet: encoding HD maps and agent dynamics from vectorized representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11525-11533.
|
19 |
LIANG M, YANG B, HU R, et al. Learning lane graph representations for motion forecasting[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 541-556.
|
20 |
KIM B, PARK S H, LEE S, et al. LaPred: lane-aware prediction of multi-modal future trajectories of dynamic agents[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 14636-14645.
|
21 |
ZENG W Y, LIANG M, LIAO R J, et al. LaneRCNN: distributed representations for graph-centric motion forecasting[C]//Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York, USA: ACM Press, 2021: 532-539.
|
22 |
连静, 丁荣琪, 李琳辉, 等. 基于图模型和注意力机制的车辆轨迹预测方法. 兵工学报, 2023, 44(7): 2162- 2170.
URL
|
|
LIAN J, DING R Q, LI L H, et al. Vehicle trajectory prediction method based on graph models and attention mechanism. Acta Armamentarii, 2023, 44(7): 2162- 2170.
URL
|
23 |
MERCAT J, GILLES T, EI ZOGHBY N, et al. Multi-head attention for multi-modal joint vehicle motion forecasting[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Washington D. C., USA: IEEE Press, 2020: 9638-9644.
|
24 |
SCHMIDT J, JORDAN J, GRITSCHNEDER F, et al. CRAT-Pred: vehicle trajectory prediction with crystal graph convolutional neural networks and multi-head self-attention[C]//Proceedings of the 2022 International Conference on Robotics and Automation. New York, USA: ACM Press, 2022: 7799-7805.
|
25 |
WILSON B, QI W, AGARWAL T, et al. Argoverse 2: next generation datasets for self-driving perception and forecasting[EB/OL]. [2023-05-10]. https://arxiv.org/abs/2301.00493.
|
26 |
CHANG M F, RAMANAN D, HAYS J, et al. Argoverse: 3D tracking and forecasting with rich maps[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 8748-8757.
|
27 |
|