1 |
王陇德, 彭斌, 张鸿祺, 等. 《中国脑卒中防治报告2020》概要. 中国脑血管病杂志, 2022, 19(2): 136- 144.
URL
|
|
WANG LD, PENG B, ZHANG H Q, et al. Brief report on Stroke prevention and treatment in China, 2020. Chinese Journal of Cerebrovascular Diseases, 2022, 19(2): 136- 144.
URL
|
2 |
PAUL S, CANDELARIO-JALIL E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Experimental Neurology, 2021, 335, 113518.
doi: 10.1016/j.expneurol.2020.113518
|
3 |
LI F L, FAN Y Z, ZHANG X Y, et al. Multi-feature fusion method based on EEG signal and its application in stroke classification. Journal of Medical Systems, 2019, 44(2): 39.
|
4 |
张思琪, 杨添淞, 马帅, 等. 深度学习在脑卒中诊断与防治中的研究进展. 磁共振成像, 2022, 13(11): 125- 128.
URL
|
|
ZHANG S Q, YANG T S, MA S, et al. Research progress of deep learning in stroke diagnosis and prevention. Chinese Journal of Magnetic Resonance Imaging, 2022, 13(11): 125- 128.
URL
|
5 |
QURESHI A A, ZHANG C, ZHENG R, et al. Ischemic stroke detection using EEG signals[C]//Proceedings of Conference of the Center for Advanced Studies on Collaborative Research. New York, USA: ACM Press, 2018: 301-308.
|
6 |
CASSANI R, ESTARELLAS M, SAN-MARTIN R, et al. Systematic review on resting-state EEG for Alzheimer's disease diagnosis and progression assessment. Disease Markers, 2018, 2018, 5174815.
|
7 |
ZHANG R L, JIA J, ZHANG R. EEG analysis of Parkinson's disease using time-frequency analysis and deep learning. Biomedical Signal Processing and Control, 2022, 78, 103883.
doi: 10.1016/j.bspc.2022.103883
|
8 |
HE C, LIU J L, ZHU Y S, et al. Data augmentation for deep neural networks model in EEG classification task: a review. Frontiers in Human Neuroscience, 2021, 15, 765525.
doi: 10.3389/fnhum.2021.765525
|
9 |
ZHENG W J, ZHAO H. Cost-sensitive hierarchical classification for imbalance classes. Applied Intelligence, 2020, 50(8): 2328- 2338.
doi: 10.1007/s10489-019-01624-z
|
10 |
BHAGYASHREE, KUSHWAHA V, NANDI G C. Study of prevention of mode collapse in Generative Adversarial Network(GAN)[C]//Proceedings of the 4th Conference on Information & Communication Technology(CICT). Washington D. C., USA: IEEE Press, 2020: 1-6.
|
11 |
WANG X Y, CAO Z Z, WANG R, et al. Improving human pose estimation with self-attention generative adversarial networks. IEEE Access, 2019, 7, 119668- 119680.
doi: 10.1109/ACCESS.2019.2936709
|
12 |
SUN G C, DING S F, SUN T F, et al. SA-CapsGAN: using capsule networks with embedded self-attention for generative adversarial network. Neurocomputing, 2021, 423, 399- 406.
|
13 |
孙玲俊, 毛经宇, 刘坤. FAGAN: 一种基于模型迁移与注意力机制的太阳电池缺陷图像对抗生成方法. 太阳能学报, 2023, 44(9): 78- 84.
URL
|
|
SUN L J, MAO J Y, LIU K. FAGAN: an adversarial generation method of solar cells defect image based on model transfer and attention mechanism. Acta Energiae Solaris Sinica, 2023, 44(9): 78- 84.
URL
|
14 |
TANG J H, ZOU B, LI C, et al. Plane-wave image reconstruction via generative adversarial network and attention mechanism. IEEE Transactions on Instrumentation Measurement, 2021, 70, 3087819.
|
15 |
KUO C H, LU T H, CHEN G T, et al. Towards precision sleep medicine: self-attention GAN as an innovative data augmentation technique for developing personalized automatic sleep scoring classification. Computers in Biology and Medicine, 2022, 148, 105828.
|
16 |
郭钰玲. 脑卒中不平衡数据集的分类算法研究[D]. 太原: 太原理工大学, 2021.
|
|
GUO Y L. Research on classification algorithm of stroke imbalance dataset[D]. Taiyuan: Taiyuan University of Technology, 2021. (in Chinese)
|
17 |
蒋芸, 谭宁, 张海, 等. 基于条件生成对抗网络的咬翼片图像分割. 计算机工程, 2019, 45(4): 223- 227.
URL
|
|
JIANG Y, TAN N, ZHANG H, et al. Bitewing radiography image segmentation based on conditional generative adversarial network. Computer Engineering, 2019, 45(4): 223- 227.
URL
|
18 |
ZHAO H S, JIA J Y, KOLTUN V. Exploring self-attention for image recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Washington D. C., USA: IEEE Press, 2020: 10076-10085.
|
19 |
|
20 |
DU Y P, PEI B B, ZHAO X Z, et al. Deep scaled dot-product attention based domain adaptation model for biomedical question answering. Methods, 2020, 173, 69- 74.
doi: 10.1016/j.ymeth.2019.06.024
|
21 |
刘其开, 姜代红, 李文吉. 基于分段损失的生成对抗网络. 计算机工程, 2019, 45(5): 155-160, 168.
URL
|
|
LIU Q K, JIANG D H, LI W J. Generative adversarial network based on piecewise loss. Computer Engineering, 2019, 45(5): 155-160, 168.
URL
|
22 |
HAZRA D, BYUN Y C. SynSigGAN: generative adversarial networks for synthetic biomedical signal generation. Biology, 2020, 9(12): 441.
|
23 |
CAO S. Choose a transformer: Fourier or Galerkin. Advances in Neural Information Processing Systems, 2021, 34, 24924- 24940.
|
24 |
RASHEED K, QADIR J, O'BRIEN T J, et al. A generative model to synthesize EEG data for epileptic seizure prediction. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 2322- 2332.
|
25 |
WANG W, LI Y T, ZOU T, et al. A novel image classification approach via dense-MobileNet models. Mobile Information Systems, 2020,(1): 7602384.
|
26 |
|
27 |
WU Q F, CHEN Y P, MENG J. DCGAN-based data augmentation for tomato leaf disease identification. IEEE Access, 2020, 8, 98716- 98728.
|
28 |
WANG Q F, ZHOU X H, WANG C, et al. WGAN-based synthetic minority over-sampling technique: improving semantic fine-grained classification for lung nodules in CT images. IEEE Access, 2019, 7, 18450- 18463.
|
29 |
JIN Q M, LIN R H, YANG F C. E-WACGAN: enhanced generative model of signaling data based on WGAN-GP and ACGAN. IEEE Systems Journal, 2020, 14(3): 3289- 3300.
|