作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (1): 81-87. doi: 10.19678/j.issn.1000-3428.0068594

• 人工智能与模式识别 • 上一篇    下一篇

基于Squeezeformer的多颗粒度多方面发音质量评测方法

费涛1,*(), 艾山·吾买尔2, 杜文旭2, 朱翠翠2   

  1. 1. 新疆大学软件学院, 新疆 乌鲁木齐 830017
    2. 新疆大学计算机科学与技术学院, 新疆 乌鲁木齐 830017
  • 收稿日期:2023-10-16 出版日期:2025-01-15 发布日期:2024-04-02
  • 通讯作者: 费涛
  • 基金资助:
    中央引导地方科技发展专项资金项目(202204120018)

Multi-Granularity and Multi-Aspect Pronunciation Quality Evaluation Method Based on Squeezeformer

FEI Tao1,*(), Aishan Wumaier2, DU Wenxu2, ZHU Cuicui2   

  1. 1. School of Software, Xinjiang University, Wulumuqi 830017, Xinjiang, China
    2. School of Computer Science and Technology, Xinjiang University, Wulumuqi 830017, Xinjiang, China
  • Received:2023-10-16 Online:2025-01-15 Published:2024-04-02
  • Contact: FEI Tao

摘要:

口语发音质量评测相对于发音错误检测和诊断(MDD)任务, 不仅需要原始的数据特征, 还需要许多流畅度、准确度、完整度等特征辅助进行实现, 所以对口语发音质量评测的研究远远少于对MDD的研究。目前对于口语发音质量评测的研究都是对语音评分某一项指标单方面进行评分。设计将Transformer替换Squeezeformer的改进模型Squeezeformer-MR对基线模型进行改进, Squeezeformer-MR使用多个残差连接增强了前后特征信息的传递。实验中, 在参数设置上保持与基线模型一致, 使用最稳定的24层嵌入层时, 音素级、词级和句子级方面的综合评分的皮尔逊相关系数(PCC)相比基线模型分别提升了1.96%、6.37%和1.08%。在初次改进的基础上, 使用WavLM和HuBERT预训练模型对训练集提取相应的特征, 将提取到的预训练特征以拼接方式添加到原GOP特征中进行特征融合, 使用融合特征以相同方式进行训练, 得到的音素级、词级和句子级方面综合评分的PCC相比基线模型分别提升了2.45%、7.10%和1.89%。

关键词: Squeezeformer模型, 发音质量评测, 预训练模型, 特征融合, 皮尔逊相关系数

Abstract:

Compared with the task of Mispronunciation Detection and Diagnose (MDD), oral pronunciation quality evaluation requires not only the original data features but also additional features such as fluency, accuracy, and completeness. Therefore, research on oral pronunciation quality evaluations is significantly less developed than that on MDD. Current studies on oral pronunciation quality evaluation are based on a single index: the phonetic score. This study replaces the Squeezeformer model with an improved Squeezeformer-MR model based on a Transformer, which enhances the baseline model by exploiting multiple residual connections to improve the transfer of feature information across layers. In the experiments conducted, the parameter settings are consistent with the baseline model. Using the most stable 24-layer embedding layer, the Pearson Correlation Coefficient (PCC) of the comprehensive score increases by 1.96%, 6.37%, and 1.08% at the phoneme, word, and sentence levels, respectively. Building on this improvement, the WavLM and HuBERT pre-training models are employed to extract corresponding features from the training set. These pre-training features are fused with original Goodness of Pronunciation (GOP) features using a splicing method and trained likewise. The fusion features further enhance performance, with PCC improvements of 2.45%, 7.10%, and 1.89% at the phoneme-, word-, and sentence-level scores compared to the baseline model.

Key words: Squeezeformer model, pronunciation quality assessment, pre-training model, feature fusion, Pearson Correlation Coefficient (PCC)