1 |
LIN B H, WANG L Y, FENG X L, et al. Automatic scoring at multi-granularity for L2 pronunciation[C]//Proceedings of the Interspeech 2020. [S. l. ]: ISCA, 2020: 3022-3026.
|
2 |
LI W, SINISCALCHI S M, CHEN N F, et al. Improving non-native mispronunciation detection and enriching diagnostic feedback with DNN-based speech attribute modeling[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2016: 6135-6139.
|
3 |
LI K , WU X X , MENG H . Intonation classification for L2 English speech using multi-distribution deep neural networks. Computer Speech [WT《Times New Roman》] & Language, 2017, 43, 18- 33.
|
4 |
DOREMALEN J V, CUCCHIARINI C, STRIK H. Using non-native error patterns to improve pronunciation verification[C]//Proceedings of the 11th Annual Conference of the International Speech Communication Association. Makuhari, Japan: [s. n. ], 2010: 26-30.
|
5 |
SUDHAKARA S, RAMANATHI M K, YARRA C, et al. An improved Goodness of Pronunciation(GOP) measure for pronunciation evaluation with DNN-HMM system considering HMM transition probabilities[C]//Proceedings of the Interspeech 2019. [S. l. ]: ISCA, 2019: 954-958.
|
6 |
HU W P , QIAN Y , SOONG F K , et al. Improved mispronunciation detection with deep neural network trained acoustic models and transfer learning based logistic regression classifiers. Speech Communication, 2015, 67, 154- 166.
doi: 10.1016/j.specom.2014.12.008
|
7 |
BANNO S, MATASSONI M. Proficiency assessment of L2 spoken English using Wav2Vec 2.0[C]//Proceedings of the IEEE Spoken Language Technology Workshop. Washington D. C., USA: IEEE Press, 2023: 1088-1095.
|
8 |
SHI J T, HUO N, JIN Q. Context-aware goodness of pronunciation forcomputer-assisted pronunciation training[EB/OL]. [2023-08-10]. https://arxiv.org/abs/2008.08647 .
|
9 |
LIU J J , WUMAIER A , FAN C , et al. Automatic fluency assessment method for spontaneous speech without reference text. Electronics, 2023, 12 (8): 1775.
doi: 10.3390/electronics12081775
|
10 |
LIU J J, MENG H Z, SHEN Y F, et al. Multimodal automatic speech fluency evaluation method for Putonghua Proficiency Test propositional speaking section[C]//Proceedings of the 13th International Symposium on Chinese Spoken Language Processing. Washington D. C., USA: IEEE Press, 2022: 260-264.
|
11 |
WANG Z B , WU Q . RETRACTED: research on automatic evaluation method of Mandarin Chinese pronunciation based on 5G network and FPGA. Microprocessors and Microsystems, 2021, 80, 103534.
doi: 10.1016/j.micpro.2020.103534
|
12 |
ARIAS J P , YOMA N B , VIVANCO H . Automatic intonation assessment forcomputer aided language learning. Speech Communication, 2010, 52 (3): 254- 267.
doi: 10.1016/j.specom.2009.11.001
|
13 |
KIM E, JEON J J, SEO H, et al. Automatic pronunciation assessment using self-supervised speech representation learning[C]//Proceedings of the Interspeech 2022. [S. l. ]: ISCA, 2022: 1411-1415.
|
14 |
GONG Y, CHEN Z Y, CHU I H, et al. Transformer-based multi-aspect multi-granularity non-native English speaker pronunciation assessment[C]//Proceedings of 2022 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Washington D. C., USA: IEEE Press, 2022: 7262-7266.
|
15 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-08-10]. https://arxiv.org/pdf/1810.04805v2 .
|
16 |
FAN Z X , LI J , WUMAIER A , et al. A multifaceted approach to oral assessment based on the conformer architecture. IEEE Access, 2023, 11, 28318- 28329.
doi: 10.1109/ACCESS.2023.3255986
|
17 |
DO H, KIM Y, LEE G G. Hierarchical pronunciation assessment with multi-aspect attention[C]//Proceedings of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D. C., USA: IEEE Press, 2023: 1-10.
|
18 |
HSU W N , BOLTE B , TSAI Y H H , et al. HuBERT: self-supervised speech representation learning by masked prediction of hidden units. ACM Transactions on Audio, Speech, and Language Processing, 2021, 29, 3451- 3460.
|
19 |
CHEN S Y , WANG C Y , CHEN Z Y , et al. WavLM: large-scale self-supervised pre-training for full stack speech processing. IEEE Journal of Selected Topics in Signal Processing, 2022, 16 (6): 1505- 1518.
doi: 10.1109/JSTSP.2022.3188113
|
20 |
|
21 |
WITT S M , YOUNG S J . Phone-level pronunciation scoring and assessment for interactive language learning. Speech Communication, 2000, 30 (2/3): 95- 108.
|
22 |
KIM S, GHOLAMI A, SHAW A, et al. Squeezeformer: an efficient transformer for automatic speech recognition[EB/OL]. [2023-08-10]. http://arxiv.org/abs/2206.00888 .
|
23 |
ZHANG J B, ZHANG Z W, WANG Y Q, et al. speechocean762: an open-source non-native English speech corpus for pronunciation assessment[EB/OL]. [2023-08-10]. https://arxiv.org/abs/2104.01378 .
|
24 |
|
25 |
BAEVSKI A, ZHOU H, MOHAMED A, et al. wav2vec 2.0: a framework for self-supervised learning of speech representations[EB/OL]. [2023-08-10]. https://arxiv.org/abs/2006.11477 .
|