1 |
WANG Y H, GAO L R, HONG D F, et al. Mask DeepLab: end-to-end image segmentation for change detection in high-resolution remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102582.
doi: 10.1016/j.jag.2021.102582
|
2 |
|
3 |
WANG B, CHEN L L, CHENG J. New result on maximum entropy threshold image segmentation based on P system. Optik, 2018, 163, 81- 85.
doi: 10.1016/j.ijleo.2018.02.062
|
4 |
YAYLA R, SEN B. Region-based segmentation of terrain fields in SAR images[C]//Proceedings of the 28th Signal Processing and Communications Applications Conference. Washington D. C., USA: IEEE Press, 2020: 1-4.
|
5 |
胡高珍, 徐胜军, 孟月波, 等. 基于边缘约束局部区域MRF的图像分割方法. 计算机工程, 2021, 47(6): 253-261, 270.
URL
|
|
HU G Z, XU S J, MENG Y B, et al. Image segmentation method based on MRF with edge constrained local region. Computer Engineering, 2021, 47(6): 253-261, 270.
URL
|
6 |
XIE X L, XIE G, XU X Y, et al. Automatic image segmentation with superpixels and image-level labels. IEEE Access, 2019, 7, 10999- 11009.
doi: 10.1109/ACCESS.2019.2891941
|
7 |
YUAN X H, SHI J F, GU L C. A review of deep learning methods for semantic segmentation of remote sensing imagery. Expert Systems with Applications, 2021, 169, 114417.
doi: 10.1016/j.eswa.2020.114417
|
8 |
林思玉, 王敬东, 顾东泽, 等. 一种基于FCOS神经网络的小建筑物目标检测方法. 半导体光电, 2022, 43(2): 369- 376.
URL
|
|
LIN S Y, WANG J D, GU D Z, et al. Small buildings detection method based on FCOS neural network. Semiconductor Optoelectronics, 2022, 43(2): 369- 376.
URL
|
9 |
SUN Y, TIAN Y, XU Y P. Problems of encoder-decoder frameworks for high-resolution remote sensing image segmentation: structural stereotype and insufficient learning. Neurocomputing, 2019, 330, 297- 304.
doi: 10.1016/j.neucom.2018.11.051
|
10 |
景庄伟, 管海燕, 彭代峰, 等. 基于深度神经网络的图像语义分割研究综述. 计算机工程, 2020, 46(10): 1- 17.
doi: 10.3778/j.issn.1002-8331.2001-0320
|
|
JING Z W, GUAN H Y, PENG D F, et al. Survey of research in image semantic segmentation based on deep neural network. Computer Engineering, 2020, 46(10): 1- 17.
doi: 10.3778/j.issn.1002-8331.2001-0320
|
11 |
|
12 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2023-07-05]. https://arxiv.org/abs/2010.11929.
|
13 |
XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[EB/OL]. [2023-07-05]. https://arxiv.org/abs/2105.15203.
|
14 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 3431-3440.
|
15 |
|
16 |
褚张晴晴, 钟志强, 颜子夜, 等. 基于特征融合与注意力机制的脑肿瘤分割算法. 计算机工程, 2023, 49(10): 154- 161.
URL
|
|
CHUZHANG Q Q, ZHONG Z Q, YAN Z Y, et al. Brain tumor segmentation algorithm based on feature fusion and attention mechanism. Computer Engineering, 2023, 49(10): 154- 161.
URL
|
17 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. [2023-07-05]. https://arxiv.org/abs/1412.7062.
|
18 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834- 848.
doi: 10.1109/TPAMI.2017.2699184
|
19 |
|
20 |
|
21 |
苏晓东, 李世洲, 赵佳圆, 等. 基于多级叠加和注意力机制的图像语义分割. 计算机工程, 2023, 49(9): 265-271, 278.
URL
|
|
SU X D, LI S Z, ZHAO J Y, et al. Image semantic segmentation based on multi-level superposition and attention mechanism. Computer Engineering, 2023, 49(9): 265-271, 278.
URL
|
22 |
张宸嘉, 朱磊, 俞璐. 卷积神经网络中的注意力机制综述. 计算机工程与应用, 2021, 57(20): 64- 72.
URL
|
|
ZHANG C J, ZHU L, YU L. Review of attention mechanism in convolutional neural networks. Computer Engineering and Applications, 2021, 57(20): 64- 72.
URL
|
23 |
HU J, SHEN L, SUN G. Squeeze-and-Excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
24 |
|
25 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
26 |
|
27 |
|
28 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481- 2495.
doi: 10.1109/TPAMI.2016.2644615
|
29 |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2881-2890.
|
30 |
QIN X B, ZHANG Z C, HUANG C Y, et al. U2-Net: going deeper with nested U-structure for salient object detection. Pattern Recognition, 2020, 106, 107404.
doi: 10.1016/j.patcog.2020.107404
|
31 |
SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 5693-5703.
|
32 |
GUO M H, LU C G, HOU Q B, et al. SegNeXt: rethinking convolutional attention design for semantic segmentation[EB/OL]. [2023-07-05]. https://arxiv.org/abs/2209.08575.
|